
1

Cluster Computing

2

Parallel I/O for Clusters
Introduction
A Case for Cluster I/O Systems
The Parallel I/O Problem
File Abstraction
Methods and Techniques
Architectures and Systems
The ViPIOS Approach
Conclusions and Future Trends

3

Introduction

Microprocessors increase their performance by 50% 
to 100% per year, but disk hardly their performance

more exaggerated in processing huge data sets
smart parallel I/O algorithms are required to access the data 
on disk efficiently

In high performance computing the application 
shifted from being CPU-bound to be I/O bound
Performance cannot be scaled up by increasing the 
number of CPUs any more, but by increasing the 
bandwidth of the I/O subsystem

4

Introduction

Cluster-based parallel I/O systems
ViPIOS

client-server based tool 
combining capabilities found in parallel 
I/O runtime libraries and parallel file 
systems

5

A Case for Cluster I/O Systems

An architectural framework similar to a cluster of 
computers can be found in state-of-the-art MPP 
systems 
Two different types of I/O systems for MPPs

external attached I/O subsystems
connected with the MPP by a separate interconnection bus
dedicated bus
system administration and application development are 
relatively simple

internal I/O nodes
an I/O node is a conventional processing node with a disk 
attached
only the software distinguishes between I/O and computing 
node

6

I/O Architecture Topologies



2

7

A Case for Cluster I/O Systems

MPP I/O framework is similar to cluster I/O 
framework
Eminent drawback is the latency of the 
interconnection network

Computational-bound application
It is overcome by applying new bus technologies (Giganet, 
Myrinet) or by using multiple I/O buses in parallel

I/O based application
The already developed methods and paradigms to 
overcome this I/O bottleneck on MPP systems can 
similarly be used on cluster system.

Clusters are a suitable platform for I/O based applications
8

The Parallel I/O Problem

IO needs of typical supercomputing applications
Input
Debugging
Scratch file
Checkpoint/restart
Output
Accessing out-of-core structure

Regular Problem
This approach is supported by the well-known SPMD model

Single thread control-parallel execution
Global namespace 
Loose synchronization

This model design a sequential program and transfer it to 
parallel execution

9

The Parallel I/O Problem
Irregular Problem

Data access patterns cannot be predicted until runtime
Three different kinds to be optimized

Irregular control structures
conditional statements making it inefficient to run on synchronous 
programming models

Irregular data structures
unbalanced trees or graphs

Irregular communication patterns
these lead to non-determinism

Out of Core (OOC) Computation
Primary data structure do not wholly fit into main memory
Computation is carried out in several phases

Data is brought into main memory
Process
Store back onto secondary storage

10

File Abstraction

Files can be accessed synchronized 
By collective file operations

4 execution modes for parallel file I/O
Broadcast-reduce

access the same data collectively
for a read, all processes get a copy of the read data
for a write, data is written only once

Scatter-gather
all processes access different parts of the file

Shared offset
the processes share a common file handle but access the file 
individually

Independent
each process has its own private handle

11

File Abstraction

Layers in the file architecture to allow flexibility for 
the programmer and the administration methods
Three independent layers in the file architecture

Problem layer
Define problem specific data distribution among 
cooperating parallel processes

File layer
Provide a composed view of persistently stored data in the 
system

Data layer
Define physical data distribution among the available disks

12

File Abstraction



3

13

File Abstraction

Mapping functions between these 
layers

Logical data independence 
exist between the problem and the file 
layer

Physical data independence
exist between the file and data layer

14

Methods and Techniques

Aim to accomplish followings
Maximize the use of available parallel I/O device 
to increase the bandwidth
Minimize the number of disk read and write 
operation per device
Minimize the number of I/O specific messages 
between processes to avoid unnecessary costly 
communication
Maximize hit ratio (ratio between accessed data 
to requested data): data sieving

15

Methods and Techniques
Three groups of methods in the parallel I/O execution 
framework

Application level methods
Try to organize the main memory objects mapping the disk space to 
make disk accesses efficient

Buffering algorithm
By runtime libraries which are linked to the application programs
The application program performs the data accesses itself without 
the need for dedicated I/O server programs

I/O level methods
Try to reorganize the disk access requests of the application 
programs to achieve better performance
By independent I/O node servers which collect the requests and 
perform the accesses

Access anticipation methods
Anticipate data access patterns which are drawn by hints from the 
code advance to its execution

16

Two Phase Method
A method for reading/writing in-core arrays from/to disk
Base on the fact that I/O performance is better when process 
make an small number of large request instead of a large 
number of small ones

The processes read data from disk
Data is redistributed among the processes by inter-process 
communication

ETPM
Several I/O requests are combined into fewer larger requests

eliminate multiple disk accesses for the same data (reducing 
contention for disks)

All processes have to participate in the collective operation
Advantage: process can cooperate to perform certain optimizations 
when the same data is required by more processes

17

Disk Directed I/O
Improve the performance of reading/writing large, regular data 
structures such as a matrix distributed between memory and 
distributed disks
In traditional Unix-like parallel filesystems, individual processor 
make a request to the file system for each piece of data

If many processes request the same data, a file is read multiple times 
and the data is transmitted to each processor independently

Interface that support collective I/O
all processes make a single joint request to the file system 
optimizing data transfer

High-level request is sent to an I/O node
usage of less memory, less CPU and message passing overhead

Double-buffering
Special remote-memory “get” and “put” message 

to pipeline the transfer of data
18

Two-Phase Data Administration
Try to anticipate data access patterns of the application 
program as early as possible in the program execution cycle 
Management of data is split into two distinct phases 

Preparation phase
data layout decisions, data distribution operations 
precedes the execution of the application processes
uses the information collected during the application program 
compilation process.
physical data layout schemes are defined
actual server process for each application process and disks for the 
stored data are chosen
data storage areas are prepared
main memory buffers allocated

Administration phase
data accesses and data prefetching
accomplishes the I/O requests of the application processes and 
performs necessary reorganization of the data layout



4

19

Two-Phase Data Administration

20

Two-Phase Data Administration
Hints are the general tool to support the I/O subsystem with 
information for the data administration process

Hints: data and problem-specific information provided by the 
application programmer or compiler
File administration hints

provide information on the problem specific data distribution of the 
application processes
high parallelization can be reached if the problem specific data 
distribution of the application processes matches the physical data 
layout on disk

Data prefetching hints
yield better performance by pipelined parallelism and file alignment

Administration hints
allow the configuration of the I/O subsystem according to the 
problem situation respective to the underlying hardware 
characteristics and their specific I/O needs

21

Architectures and Systems

To solve I/O bottleneck problem
Two different approaches

Parallel file systems
low level solution
OS is enhanced by special features that 
deal directly with I/O at the level of files

Runtime library for high performance 
language

enhance conventional high performance 
language such as Fortran or C/C++

22

Runtime Modules and Libraries

The aim is to adapt graciously to the requirements of the 
problem characteristics specified in the application 
program and tools for the application programmer
The executing application can hardly react dynamically to 
changing system situations or problem characteristics

the data decisions were made during the programming and not 
during the execution phase

The CPU of a node has to accomplish both the application 
processing and the I/O request of the application 
The optimal performance is nearly impossible to reach by 
the usage of runtime libraries

23

I/O Runtime Libraries

24

MPI-I/O
Parallel I/O interface based on MPI message passing framework
Supports a high-level interface

partition files among multiple processes
transfer global data structures between process memories and files
optimizations of physical file layout on storage device

Three access functions
Positioning is accomplished by explicit offsets, individual file pointers, 
and shared file pointers
Synchronization and asynchronization (blocking, nonblocking, 
respectively)
Coordination by collective operations

Typical implementation of MPI-IO
PMPIO: Portable MPI I/O by NASA Ames Research Center
ROMIO: as MPI-IO extension of MPICH by Argonne National Lab.
MPI-IO/PIOFS: by IBM Watson Research Center
HPSS implementation: by Lawrence Livermore National Lab.



5

25

Tiling a File Using a Filetype

26

Parallel File Systems
Parallel disk access via a parallel filesystem interface
Balance the parallel processing capabilities of their processor 
architectures with the I/O capabilities of a parallel I/O subsystem
Compared to runtime libraries, parallel filesystems have the 
advantage that they execute independently from their application

execute independently from their application
I/O servers are directly support
Debugging
Tracing
Checkpointing

Drawback 
not support the capabilities of the available high performance languages 
directly
disallow the programmer to coordinate the disk access according to the 
distribution profile of the problem specification

27

Parallel File Systems

28

Parallel Database Systems

Link to the spread of the relational model as the 
common user interface
Relational queries are well suited for parallel 
execution
Two different types of parallelism can be 
distinguished 

Inter-operator parallelism
Parallelism from independent, but simultaneous, execution 
of different operators of the query execution tree

Intra-operator parallelism
Partitioning input data stream of one operator to a number 
of parallel query processes
Each process execute the same operation on a different 
part of data

29

The ViPIOS Approach

By the University of Vienna
A full-fledged parallel I/O runtime system
Available both as runtime library and as I/O server 
configuration

It can serve as I/O module for high performance languages 
and supports the standardized MPI-IO interface

It was developed by focusing on workstation cluster 
system
Parallel I/O for High Performance Languages

Static fit property: adapt disk access profile of 
programmer or compiler
Dynamic fit property: adaptability of the I/O runtime 
subsystem to applications or environment’s characteristics

30

Design Principles

Gather all available information on the 
application process both during the 
compilation process and runtime execution

Provide the optimal fitting data access profile for 
the application and may then react to the 
execution behavior dynamically
Allow optimal performance by aiming for maximum 
I/O bandwidth

ViPIOS is an I/O runtime system which 
provides efficient access to persistent files 

by optimizing the data layout on the disks and 
allowing parallel read/write operations 



6

31

Design Principles

ViPIOS is supporting I/O module for high 
performance languages
Design principles

Scalability
System architecture is highly distributed and decentralized

Efficiency
Suitable data organization to provide a transparent view of 
the stored data on disk to the outside world
Organize data layout on disk respective to the static 
application problem description and dynamic runtime 
requirements

Parallelism
Perform various forms of efficient and parallel data access 
modes

32

System Architecture

The basic idea to solve the I/O bottleneck in 
ViPIOS is decoupling

Disk access operations are de-coupled from the 
application and performed by an independent I/O 
subsystems
Build upon a set of cooperating server processes
Server processes run independently on all or a 
number of dedicated processing nodes on the 
underlying MPP
One-to-many relationship between the application 
and the servers

33

ViPIOS System Architecture

34

System Architecture

Data Locality
It is design principle to achieve high data access 
performance
The data requested by an application process 
should be read/written from to the best-suited 
disk
Logical Data Locality

Choose the best suited ViPIOS server for an 
application process

Physical Data Locality
Determine the disk set providing the best data 
access

35

System Architecture

ViPIOS Server
Interface layer

provide the connection to the outside world
Kernel layer

responsible for all server specific tasks
Message manager is responsible for communication externally 
and internally
Fragmenter makes decisions on the effective data layout, 
administration, and ViPIOS actions
Directory manager stores the meta information of the data
Memory manager is responsible for prefetching, caching and 
buffer management

Disk manager layer
provide the access to the available and supported disk sub-
systems

36

ViPIOS Server Architecture



7

37

System Architecture

System Modes
Runtime library 

perform all disk I/O requests of the program
ViPIOS is not running on independent servers, but as part of 
the application

Dependent system
ViPIOS is running as an independent module in parallel to the 
application, but is started together with the application

Independent system
achieve highest possible I/O bandwidth by exploiting all 
available data administration possibilities
ViPIOS is running similar to a parallel filesystem or a database 
server waiting to connect via ViPIOS interface

38

ViPIOS System Modes

39

Data Administration

The data administration in ViPIOS is guided 
by two principles

Two phase data administration
Data access modes

Data access modes
Local data access (buddy access)

the buddy server can resolve the applications 
requests on its own disks

Remote data access (foe access)
the buddy server cannot resolve the request on its 
disks and must broadcast the request to the other 
ViPIOS servers to find the owner of the data

40

“Buddy” and “Foe” Servers

41

Local versus Remote Data Access

42

Data Administration

Disk access modes
Sequential mode

allow a single application process to send a sequential 
read/write operation, which is processed by a single ViPIOS 
server in sequential manner

Parallel mode
ViPIOS processes the sequential process in parallel by 
splitting the operation into independent sub-operations and 
distributing them onto available ViPIOS server processes

Coordinated mode
a read/write operation is requested by a number of application 
processes collectively
sub-operations are processed by ViPIOS servers sequentially



8

43

Disk Access Modes


