
1

Cluster Computing

Dependable
Clustered Computing

2

Introduction
Two different areas of computing with slightly different
motivations

High performance (HP)
High availability (HA)

The clustering model can provide both HA & HP, and also
manageability, scalability, & affordability

To accomplish the dream, cluster software technologies still have to
evolve & mature

Clusters
Poor man’s answer for the parallel high performance computing quest

Observed in Gordon Bell prize
Typically homogeneous, tightly coupled, nodes trust each other

Compare with distributed systems
As number of h/w components rises, so does the probability of failure

(Leslie Lamport) “ a distributed system is one in which the failure of a
computer you didn’t even know existed can render your own computer
unusable”
Increasing probability of fault occurrence for long-running applications

3

Failover

In case of failure of a component in the
primary system, the critical applications
can be transferred to the secondary
server, thus avoiding downtime and
guaranteeing application’s availability
Inevitably imply a temporary degradation
of the service, but without total
permanent loss
Fault-tolerant servers, pioneered by
Tandem

4

Two Worlds Converge

Only fault tolerance can enable effective
parallel computing by allowing application
continuity
Parallelism enables high-availability by
providing redundancy

5

Dependable Parallel Computing
Dependability

Arose as an issue as soon as clusters started to be used by HP
community

Two main reasons
As systems scale up to hundreds of nodes, the likelihood of a
node failure increases proportionally with number of nodes

caused not only by permanent faults (permanent damage), but mainly
by transient ones (due to heating, electromagnetic interference,
marginal design, transient SW faults, and power supply
disturbances)

Those faults that statistically don’t cause node failures, but have
other insidious effects

the effect of faults on application running in parallel systems
a large percentage of faults do not cause nodes to crash, system panics,
core dumps, or application to hang
in many cases, everything goes apparently fine, but in the end, parallel
application generate incorrect results

6

Dependable Parallel Computing

Examples
ASCI Red : 9000 Intel Pentium Pro (a 263
Gbytes memory machine)

MTBF : 10 hours for permanent faults, 1-2 hours
for transient faults (a node’s MTBF is 10 years)

ORNL (MPP, not cluster)
MTBF is 20 hours

Carnegie Mellon University (400 nodes)
MTBF is 14 hours

2

7

Mission/Business Critical Computing
The demand for HA applications increases

Electronic commerce, WWW, data warehouse, OLAP, etc.
the cost of outage is substantial

Development of dependable computing
Cold-backup

one of the first protection mechanism for critical applications
data offline backup

Hot-backup
Protect data, not just at a certain time of the day, but on a
continuous basis using a mirrored storage system where all data is
replicated
RAID were introduced to protect data integrity

Advanced H/W redundancy system
Redundancy at all system level to eliminate single point of failure
Fault tolerant, 99.999 % availability (5 mins downtime per year)

8

Mission/Business Critical Computing
Combine highly reliable & highly scalable computing solutions with
open & affordable components

Can be done with clusters
The ability to scale to meet the demands of service growth became a
requirement
High performance joined high-availability as an additional requirement
for mission/business critical systems

Clusters intrinsically have the ability to provide HP & scalability
High availability scalable clusters

Today’s mission/business critical clusters as a combination of the
following capabilities

Availability: one system to failover to another system
Scalability: increase the number of nodes to handle load increase
Performance: perform workload distribution
Manageability: manage a single system

as a requirement
clusterware

9

Dependability Concepts
Faults, Errors, Failures

Error detection latency
The time between the first occurrence of the error and the
moment when it is detected
The longer, the most affected the internal state of the system

Fault
When an error has some phenomenological cause
Transient

Re-execution can compensate for a transient fault
Permanent

More complex to handle
Software faults (bugs)

Bohrbugs
– bugs are always there again when the program is re-executed
Heisenbugs
- in a re-execution, the timing will usually be slightly different,

the bug does not happen again
10

Dependability Concepts

Dependability Attributes
Reliability

Probability of that continuous correct operation
Availability

A measure of the probability that the system will
be providing good service at a given point in time

MTBF - The Mean Time Between Failures
MTTR - The Mean Time To Repair a failure, &
bring the system back to correct service
Availability can be expressed as

MTBF / (MTBF+MTTR)

11

Dependability Concepts

Dependability Means
Two ways

Fault prevention
Preventing faults from occurring
Accomplished through conservative design, formal proofs,
extensive testing, etc

Fault tolerance
Prevent errors from becoming failures

2 approaches are complementary
Disaster Tolerance

Techniques aimed at handling a very particular type of
faults, namely site failures caused by fire, floods,
sabotages, etc
Usually implies having redundant hardware at a remote cite

12

Cluster Architectures
Share-Nothing versus Shared-Storage

Share-nothing cluster model
Each node has its own memory & own storage resources
Allow nodes to access common devices or resources, as long as
these resources are owned and managed by a single system at a
time
Avoid the complexity of cache coherency schemes & distributed
lock managers
May eliminate single point of failure within the cluster storage
Scalable, because of the lack of contention & overhead

Several strategies aimed at reducing bandwidth overhead
Shared-Storage

Both servers share the same storage resource with the consequent
need for synchronization between disks accesses to keep data
integrity
Distributed lock managers must be used
Scalability becomes compromised

3

13

Shared-nothing Clusters

14

Cluster Architectures

Active/Standby versus Active/Active
Active/Standby

Called hot backup
Primary server where the critical application runs
Secondary server (hot spare)

normally in standby mode
can be a lower performance machine

Active/Active
All servers are active & do not sit idle waiting for a fault to
occur & take over
Providing bidirectional-failover
The price to performance ratio decrease

N-Way
Several active servers that back up one another

15

Active/Standby Clusters

16

N-Way Clusters

17

Cluster Architectures

Interconnects
3 main kinds of interconnects – network, storage, monitoring

Vital for clusters
Network interconnect

Communication channels that provides the network connection between the
client systems & the cluster
Generally Ethernet or fast-Ethernet

Storage
Provide the I/O connection between the cluster nodes & disk storage
SCSI and Fiber Channel

SCSI is more popular, limit in length (SCSI extender technologies)
FC-AL permits fast connections - 100Mb/s - & up to 10 Km

Monitoring
Additional comm media used for monitoring purposes (heartbeats transfer)
NCR Lifekeeper

use both the network & storage interconnect for monitoring
also have an additional serial link between the servers for that purpose

18

Cluster Interconnects

4

19

Cluster Architectures

VIA
Virtual Interface (VI) Architecture
An open industry specification promoted by Intel, Compaq,
& Microsoft
Aim at defining the interface for high performance
interconnection of servers and storage devices within a
cluster (SAN)
VI proposes to standardize the network (SAN)
Define a thin, fast interface that connects software
applications directly to the networking hardware while
retaining the security & protection of the OS
VI-SAN

Specially optimized for high bandwidth & low latency comm
20

Cluster Architectures
Storage Area Network & Fiber Channel

SAN
To eliminate the bandwidth bottlenecks & scalability limitations
imposed by previous storage (mainly SCSI bus-based) architectures
SCSI is based on the concept of a single host transferring data to a
single LUN (logical unit) in a serial manner

FC-AL
Emerged as the high-speed, serial technology of choice for server-
storage connectivity
The most widely endorsed open standard for the SAN environment
High bandwidth & scalability,
Support multiple protocols (SCSI, IP) over a single physical
connection

Modular scalability
Most important advantages of the SAN approach
A key to enabling infrastructure for long term growth &
manageability

21

Detecting and Masking Faults

A dependable systems is built upon several layers
EDM (Error Detection Mechanism)

Classified according to 2 important characteristics
Error coverage

The percentage of errors that are detected
Detection latency

The time an error takes to be detected
Diagnosis layer

Collect as much info as possible about the location, source &
affected parts
Run diagnosis over the failed system to determine whether
the fault is transient or permanent

Recovery & reconfiguration

22

Detecting and Masking Faults

Self-Testing
To detect errors generated by permanent faults
Consists of executing specific programs that exercise different
parts of the system, & validating the output to the expected
known results
Not very effective in detecting transient faults

Processor, Memory, and Buses
Parity bits - primary memories
Parity checking circuitry – system buses
EDAC (error detection & correction) chips

common in workstation hardware
Built-in error detection mechanisms

inside of microprocessors
Fail to detect problem occurs at a higher level or affects data in
subtle ways

23

Detecting and Masking Faults
Watchdog Hardware Timers

Provide a simple way of keeping track of proper process functions
If the timer is not reset before it expires, the process has probably
failed in some way
Provide an indication of possible process failure
Coverage is limited

data & results are not checked
Implemented in SW or HW

Loosing the Software Watchdog
Software watchdog

A process that monitors other process(es) for errors
(simplest) Watch its application until it eventually crashes, the only action it
takes is to relaunch the applications

Monitored process is instrumented to cooperate with the watchdog
WinFT

Typical example of a SW watchdog
24

Detecting and Masking Faults
Heartbeats

A periodic notification sent by the application to the watchdog to assert its
aliveness
Consist of an application–initiated “I’m Alive” message, or a request-response
scheme (watchdog requests the application to assert its aliveness through “Are
you Alive?” message) & wait for acknowledgement
Can coexist in the same system

Useless if OS crashes
Clustering solutions provide several alternate heartbeat paths

TCP-IP, RS-232, a shared SCSI bus
Idle notification

Inform the watchdog about periods when the application is idle, or it is not doing
any useful work, then the watchdog can perform preventive actions (restarting
application)
Software Rejuvenation

software gets older, the probability of faults is higher
Error notification

An application that is encountering errors which it can’t overcome can signal the
problem to the watchdog & request recovery actions
Restart may be enough

5

25

Detecting and Masking Faults
Assertions, Consistency Checking, and ABFT

Consistency checking
Simple fault detection technique that can be implemented
both at the hardware and at the programming level
Performed by verifying that the intermediate or final results
of some operation are reasonable
At the hardware level, built-in consistency checks for
checking addresses, opcodes, and arithmetic operations

Range check
Confirm that a computed value is within a valid range

Algorithm-Based Fault Tolerance (ABFT)
After executing an algorithm, the application runs a
consistency check specific for that algorithm
Checksum for matrix operations

Extend the matrices with additional columns
26

Recovering from Faults
Checkpointing and Rollback

Checkpointing
Allow a process to save its state at regular intervals during normal
execution so that it can be restored later after a failure to reduce
the amount of lost work
When a fault occurs, the affected process can simply be restarted
from the last saved checkpoint (state) rather than from the
beginning
Protect long-running applications against transient faults
Suitable to recover applications from software errors

Checkpointing classifications
Transparency (data to include in the checkpoint)

Checkpoints can be transparently or automatically inserted at runtime
(or by the compiler)

Save large amounts of data
Inserted manually by the application programmer

The checkpointing interval
The time interval between consecutive checkpoints
Critical for automatic checkpointing

27

Recovering from Faults
Transactions

A group of operations which form a consistent
transformation of state

operations: DB updates, messages, or external actions
ACID properties

Atomicity
Either all or none of the actions should happen commit or abort

Consistency
Each transformation should see a correct picture of the state,
even if concurrent transactions are updating the state

Integrity
The transaction should be a correct state transformation

Durability
Once a transaction commit, all its effects must be preserved,
even if there is a failure

28

Recovering from Faults
Failover and Failback

Failover process
The core of the cluster recovery model
A situation in which the failure of one node causes a switch to an
alternative or backup node
Should be totally automatic and transparent, without the need for
administrator intervention or client manual reconnection
Require a number of resources to be switched over to the new
system (switch network identity)

Takeover
Used in fault-tolerant systems
Built with multiple components running in lock-step

Failback
Move back the applications/clients to the original server once it is
repaired
Should be automatic & transparent
Used efficiently for another purpose: maintenance

29

The Practice of Dependable
Clustered Computing

MS Cluster Server
Wolfpack

Provide HA over legacy windows applications, as well
as provide tools & mechanisms to create cluster-
aware applications
Inherited much of the experience of Tandem in HA

Tandem provided the Nonstop SW & the ServerNet from
Himalaya Servers

A phased approach
Phase I: support 2 node clusters & failover of one
node to another
Phase II: a multinode share-nothing architecture
scalable up to 16 nodes 30

The Practice of Dependable
Clustered Computing

NCR LifeKeeper
In 1980 NCR began delivering failover products to the
telecomm industry
LifeKeeper in the Unix world in beginning of 90s
Recently ported to Windows NT
Multiple fault detection mechanisms

Heartbeat via SCSI, LAN, & RS 232, event monitoring, & Log
monitoring

3 different configurations
Active/active, active/standby, & N-way (with N=3)

Recovery action SW kits for core system components
Provide a single point of administration & remote
administration capabilities

6

31

The Practice of Dependable
Clustered Computing

Oracle Failsafe and Parallel Server
Oracle DB options for clustered systems
The archetype of a cluster solution specially designed for DB systems
Oracle Failsafe

Based on MSCS
Support a max of 2 nodes (due to limitations of MSCS phase I)
Targeted for workgroup and department servers

Oracle Parallel Server
Support a single DB running across multiple nodes in a cluster
Not require MSCS
Support more than 2 nodes
Targeted for enterprise level systems, seeking not only HA but also scalability
Support Digital Clusters for Windows NT & IBM’s “Phoenix” technology

Oracle servers
Support hot-backups, replication, & mirrored solutions

