
1

Cluster Computing

22

PVM = Parallel Virtual Machine

Software package
Standard daemon: pvmd
Application program interface

Network of heterogeneous machines
Workstations
Supercomputers
Unix, NT, VMS, OS/2

33

The pvmd3 process
Manages each host of vm

Message router
Create, destroy, … local processes
Fault detection
Authentication
Collects output

Inter-host point of contact
One pvmd3 on each host

Can be started during boot

44

The program named pvm
Interactive control console

Configuration of PVM
Status checking

Can start pvmd

55

The library libpvm
Linked with application programs
Functions

Compose a message
Send
Receive

System calls to pvmd
libpvm3.a, libfpvm3.a, libgpvm3.a

66

libpvm3.a

Initiate and terminate processes
Pack, send, and receive messages
Synchronize via barriers
Query and change configuration of the pvm
Talk to local pvmd3
Data format conversion (XDR)

2

77

libfpvm3.a

Additionally required for Fortran codes

88

libgpvm3.a

Dynamic groups of processes

99 1010

First PVM Example: Hello World!
#include <stdio.h>
#include "pvm3.h"

main() {
int cc, tid;
char buf[100];

printf("i'm t%x\n", pvm_mytid());
cc = pvm_spawn("hello_other",

0, 0, "", 1, &tid);

if (cc == 1) {
cc = pvm_recv(-1, -1);
pvm_bufinfo(cc, 0, 0, &tid);
pvm_upkstr(buf);
printf("from t%x: %s\n",

tid, buf);
} else

printf(
"can't start hello_other\n");

pvm_exit();
exit(0);

}

/* hello_other */
#include "pvm3.h"

main() {
int ptid;
char buf[100];

ptid = pvm_parent();

strcpy(buf,
"hello, world from ");

gethostname(buf + strlen(buf),
64);

pvm_initsend(PvmDataDefault);
pvm_pkstr(buf);
pvm_send(ptid, 1);

pvm_exit();
exit(0);

}

1111

Another Example

Master-Worker (Master-Slave) Paradigm

1212

Master (in Master-Worker)
#include "pvm3.h“
#include <stdio.h>
#define SIZE 1000
#define NPROCS 5
main(){
int mytid, task_ids[NPROCS];
int a[SIZE], results[NPROCS];
int sum = 0, i, msgtype;
int num_data = SIZE/NPROCS;

/* enroll in PVM */
mytid = pvm_mytid();
for (i = 0; i < SIZE; i++)
a[i] = i % 25;

/* spawn worker tasks */
pvm_spawn("worker", (char **)0,
PvmTaskDefault, "", NPROCS,
task_ids);

/* send data to worker tasks */
for (i = 0; i < NPROCS; i++) {
pvm_initsend(PvmDataDefault);
pvm_pkint(&num_data, 1, 1);
pvm_pkint(&a[num_data*i],

num_data, 1);
pvm_send(task_ids[i], 4);

}

/* wait and gather results */
msgtype = 7;
for (i = 0; i < NPROCS; i++) {
pvm_recv(task_ids[i],

msgtype);
pvm_upkint(&results[i], 1,1);
sum += results[i];

}
printf("The sum is %d \n",sum);
pvm_exit();

}

3

1313

Worker (in Master-Worker)
#include "pvm3.h“

#include <stdio.h>

main(){

int mytid;

int i, sum, *a;

int num_data, master;

/* enroll in PVM */

mytid = pvm_mytid();

/* receive to be summed */

pvm_recv(-1, -1);

pvm_upkint(&num_data, 1, 1);

a = (int *) malloc(num_data

*sizeof(int));

pvm_upkint(a, num_data, 1);

sum = 0;

for(i = 0; i < num_data; i++)

sum += a[i];

/* send sum back to master */

master = pvm_parent();

pvm_initsend(PvmDataRaw);

pvm_pkint(&sum, 1, 1);

pvm_send(master, 7);

pvm_exit();

}

1414

1515 1616

pvm_mytid

Enrolls the calling process into PVM and
generates a unique task identifier if this
process is not already enrolled in PVM. If the
calling process is already enrolled in PVM, this
routine simply returns the process's tid.
tid = pvm_mytid ();

1717

pvm_spawn

Starts new PVM processes. The programmer
can specify the machine architecture and
machine name where processes are to be
spawned.
numt = pvm_spawn ("worker",0,PvmTaskDefault,"",1,&tids[i]);
numt = pvm_spawn ("worker",0,PvmTaskArch,"RS6K",1,&tid[i]);

1818

pvm_exit

Tells the local pvmd that this process is
leaving PVM. This routine should be called by
all PVM processes before they exit.

4

1919

pvm_addhosts

Add hosts to the virtual machine. The names
should have the same syntax as lines of a
pvmd hostfile.
pvm_addhosts (hostarray,4,infoarray);

2020

pvm_delhost

Deletes hosts from the virtual machine.
pvm_delhosts (hostarray,4);

2121

pvm_pkdatatype

Pack the specified data type into the active
send buffer. Should match a corresponding
unpack routine in the receive process.
Structure data types must be packed by their
individual data elements.

2222

pvm_upk<datatype>

Unpack the specified data type into the
active receive buffer. Should match a
corresponding pack routine in the sending
process. Structure data types must be
unpacked by their individual data elements.

2323

pvm_send

Immediately sends the data in the message
buffer to the specified destination task. This
is a blocking, send operation. Returns 0 if
successful, < 0 otherwise.
pvm_send (tids[1],MSGTAG);

2424

pvm_psend

Both packs and sends message with a single
call. Syntax requires specification of a valid
data type.

5

2525

pvm_mcast

Multicasts a message stored in the active
send buffer to tasks specified in the tids[].
The message is not sent to the caller even if
listed in the array of tids.
pvm_mcast (tids,ntask,msgtag);

2626

pvm_recv

Blocks the receiving process until a message
with the specified tag has arrived from the
specified tid. The message is then placed in a
new active receive buffer, which also clears
the current receive buffer.
pvm_recv (tid,msgtag);

2727

pvm_nrecv

Same as pvm_recv, except a non-blocking
receive operation is performed. If the
specified message has arrived, this routine
returns the buffer id of the new receive
buffer. If the message has not arrived, it
returns 0. If an error occurs, then an integer
< 0 is returned.
pvm_nrecv (tid,msgtag);

2828

PVM Collective Communication

2929

pvm_barrier

Blocks the calling process until all processes in
a group have called pvm_barrier().

pvm_barrier ("worker",5);

3030

pvm_bcast

Asynchronously broadcasts the data in the
active send buffer to a group of processes.
The broadcast message is not sent back to
the sender.
pvm_bcast ("worker",msgtag);

6

3131

pvm_gather

A specified member receives messages from each
member of the group and gathers these messages
into a single array. All group members must call
pvm_gather().
pvm_gather(&getmatrix,&myrow,10,PVM_INT,

msgtag,"workers",root);

3232

pvm_scatter

Performs a scatter of data from the specified root
to each of the members of the group, including itself.
All group members must call pvm_scatter(). Each
receives a portion of the data array from the root in
their local result array.
pvm_scatter (&getmyrow,&matrix,10,PVM_INT,

msgtag,"workers",root);

3333

pvm_reduce
Performs a reduce operation over members of the
group. All group members call it with their local data,
and the result of the reduction operation appears on
the root. Users can define their own reduction
functions or the predefined PVM reductions
pvm_reduce(PvmMax,&myvals,10,PVM_INT,msgtag

,"workers",root);

3434

Prepare to Execute a PVM session
PVM expects executables to be located in ~/pvm3/bin/$PVM_ARCH
% ln -s $PVM_ROOT/lib ~/pvm3/lib

% cc -o myprog myprog.c -I$PVM_ROOT/include
-L$PVM_ROOT/lib/$PVM_ARCH -lpvm3

3535

Create your PVM hostfile

PVM hostfile defines your parallel virtual
machine. It contains the names of all desired
machines, one per line.

3636

Create Your $HOME/.rhosts file

Example .rhosts file

mamma.cs.wright.edu user02
fr2s02.mhpcc.edu user02
beech.tc.cornell.edu jdoe
machine.mit.edu user02

7

3737

Start pvmd3

% pvmd3 hostfile &

This starts up daemons on all other machines
(remote) specified in your hostfile.
PVM console can be started after pvmd3 by
typing "pvm".

3838

Execute your application

% myprog

3939

Quitting PVM
Application components must include call of
pvm_exit().

Halting the master pvmd3 will automatically kill all
other pvmd3s and all processes enrolled in this PVM.
In pvm console: "halt"
Running in the background: enter console mode by
typing "pvm" and halt.

