
1

Cluster Computing

2

Metacomputing: Harnessing 
Informal Supercomputers

General Introduction
The Evolution of Metacomputing
Metacomputing Design Objectives and Issues
Metacomputing Projects
Emerging Metacomputing Environments
Summary and Conclusions

3

General Introduction
From CASA project, one of several U.S. Gigabit testbeds around 1989
Metacomputer

a dynamic environment that has some informal pool of nodes that can join or 
leave the environment whenever they desire

The nodes refer to independent machines
A parallel computer (IBM SP2) can be viewed as a “metacomputer in a box”
An SMP parallel computer (Tera MTA or SUN E10000) cannot
as individual computational nodes in an SMP are not independent

By Catlett & Smarr
“the use of powerful computing resources transparently available to the user via a 
networked environment”

a networked virtual supercomputer
Steps to realize a metacomputer

the integration of individual SW & HW resources into a combined networked resources
the implementation of middleware to provide a transparent view of the resources 
available
the development & optimization of distributed applications to take advantage of the 
resources

4

Why Do We Need Metacomputing?

Our computational needs are infinite, 
whereas our financial resources are 
finite

users will always want more & more 
powerful computers
try & utilize the potentially hundreds of 
thousands of computers  that are 
interconnected in some unified way 
need seamless access to remote 
resources

5

What is Metacomputer?

Computational Grid
Equivalent to metacomputing environments
Describe a universal source of computing power
The means to provide pervasive access to advanced 
computational resources, databases, sensors, and people
Analogy to electricity grid

Metacomputing encompasses
Seamless access to high performance resources
Parameter studies (embarrassingly parallel application)
The linkage of scientific instruments, analysis system, 
archival storage, and visualization (4-way metacomputing)
The general complex linkage of N distributed components

6

Towards Grid Computing….



2

7

What is Grid ?
An infrastructure that couples

Computers (PCs, workstations, clusters, traditional 
supercomputers, and even laptops, notebooks, mobile 
computers, PDA, and so on) …
Software  (e.g., renting expensive special purpose 
applications on demand)
Databases (e.g., transparent access to human genome 
database)
Special Instruments (e.g., radio telescope--
SETI@Home Searching for Life in galaxy, 
Austrophysics@Swinburne for pulsars)
People (may be even animals who knows ?)

Across the Internet and presents them as 
an unified integrated (single) resource

http://www.csse.monash.edu.au/~rajkumar/ecogrid/ 8

Conceptual view of the Grid

Leading to Portal (Super)Computing

9

Grid Application-Drivers

Old and new applications getting enabled due 
to coupling of computers, databases, 
instruments, people, etc.

(distributed) Supercomputing
Collaborative engineering
High-throughput computing

large scale simulation & parameter studies
Remote software access / Renting Software
Data-intensive computing
On-demand computing

10

The Grid Impact

“The global computational grid is 
expected to drive the economy of the 

21st century similar to the electric 
power grid that drove the economy of 

the 20th century”

11

The Parts of a Metacomputer
A metacomputer 

A virtual computer architecture 
Its constituent components are individually not important
The key concept is how these components work together as a 
unified resources
Components

Processors and Memory
An array of processors with some dynamic memory associated

Networks and Communications Software
Physical connections and some communications software

Virtual Environment
Configure, manage, and maintain the metacomputing environment 
like an OS

Remote Data Access and Retrieval
Interacting between supercomputers across national or 
international networks (a major challenge for metacomputing
environment)

12

The Evolution of Metacomputing

Early examples
FAFNER

Running on any workstation with more 
than 4MB of memory

I-WAY
A means of unifying the resource of 
large supercomputing centers



3

13

FAFNER 
The RSA algorithm - combining prime numbers

factoring is computationally very expensive 
By Bellcore Labs. ,Syracus University and Co-Operating 
Systems in 1995 
A project of factoring via the Web
Use parallel factoring algorithm (RSA130) which require no 
communications after the initial setup
Use a numerical technique NFS (Number Field Sieve) 
factoring method using computational Web servers
The consortium produced a Web interface to NFS
Server-side CGI scripts (in Perl) invoked by contributors 
support services for the sieving step of the factorization
Won award in TeraFlop challenge at SC95  

14

FAFNER 
Factors for success

The NFS implementation allowed even single 
workstations with 4MB to perform useful work using 
small bounds and a small sieve
Support anonymous registration – users could 
contribute their hardware resources to the sieving 
effort without revealing their identity to anyone 
other than the local server administrator
A consortium of sites was recruited to run the CGI 
script package locally, forming a hierarchical network 
of RSA130 Web servers which reduced the potential 
administrator bottleneck and allowed sieving to 
proceed around the clock with minimal human 
intervention

15

I-WAY 
Information Wide Area Year (I-WAY)

an experimental high performance network linking many high 
performance computers & advanced visualization environment
conceived in early 1995 with the idea not to build a network, but 
to integrate existing high-bandwidth networks with telephone 
systems 
connect 17 different U.S. sites by 10 networks  

based on ATM technology
I-POP (Point-of-Presence)

gateways to I-WAY
UNIX workstation

accessible via the Internet, operated within its site’s firewall
had an ATM interface 

I-POP provide uniform authentication, resource reservation, 
process creation, and communication functions across I-WAY 
resource

16

I-WAY 
I-Soft

a standard S/W environment of I-POP
help overcome issues such as heterogeneity, scalability, 
performance, and security

Computational Resource Broker (CRB)
Resource scheduler
Consist user-to-CRB and CRB-to-local-scheduler protocols
A single central scheduler and multiple local scheduler daemons 
(one per I-POP)

Central scheduler maintain queues of jobs and tables representing the 
state of local machines, allocating jobs to machine and maintaining 
state information on the AFS file system

Authentication proxy, performing subsequent authentication to I-
WAY resource on a user’s behalf

Kerberos authentication and encryption

17

I-WAY 
AFS

Provide a shared file repository for software and scheduler 
information
A version of remote copy (ircp) to move data between machines

Nexus
Low-level communication library
Support automatic configuration mechanism to choose appropriate 
configuration depending on the technology used

Application driven
Supercomputer – Supercomputing
Remote Resource – Virtual Reality
Virtual Reality- Virtual Reality
Multisupercomputer – Multivirtual Reality
Video, Web, GII-Windows

18

Summary of FAFNER and I-WAY
FAFNER

Forerunner of projects such as WebFlow
Work on any platform where a Web server could be run
Tailored to a particular factoring application that was in itself trivially parallel and 
was not dependent on a fast interconnect
Dependent on quite a lot of human intervention to distribute and collect sieving 
results
Lack of a number of features

Every client had to compile, link, and run a FAFNER daemon
Individual computational tasks were unable to communicate with one another

I-WAY
I-soft was very influential on the approach used to design components employed in 
the Globus toolkit
Unify the resource at supercomputing sites
Cope with a range of diverse high performance applications that typically need a 
fast interconnect
Limited by the design of components that made up I-POP and I-Soft
A number of inappropriate features

I-POP is a single-points-of-failure



4

19

Metacomputer Design Objectives 
and Issues 

General Principles 
Not interfere with the existing site administration or autonomy
Not compromise existing security of users or remote sites
Not need to replace existing OS, network protocols, or services
Allow remote sites to join or leave the environment whenever they 
choose 
Not mandate the programming paradigms, languages, tools, or 
libraries that a user wants
Provide a reliable and fault tolerance infrastructure with no single 
point of failure
Provide support for heterogeneous components
Use standards, and existing technologies, and is able to interact 
with legacy applications
Provide appropriate synchronization and component program 
linkage

20

Metacomputer Design Objectives 
and Issues 

Underlying Hardware and Software 
Infrastructure 

A metacomputing environment must be able to 
operate on top of the whole spectrum of 
current and emerging HW & SW technology
An ideal environment will provide access to the 
available resources in a seamless manner such 
that physical discontinuities such as difference 
between platforms, network protocols, and 
administrative boundaries become completely 
transparent

21

Metacomputer Design Objectives 
and Issues 

Middleware – The Metacomputing Environment  
Administrative hierarchy

the way that each metacomputing environment divides itself up 
to cope with a potentially global extent

Communication services
needs to support protocols that are used for bulk-data 
transport, streaming data, group communications, and those 
used by distributed objects

Directory/registration services
provide the mechanism for registering and obtaining 
information about the metacomputer structure, resources, 
services, and status

Processes, threads, and concurrency control
share data and maintain consistency when multiple processes 
or threads have concurrent access to it

22

Metacomputer Design Objectives 
and Issues 

Middleware – The Metacomputing Environment  
Time and clocks

time is an entity that we wish to measure accurately
algorithms have been developed that depends on clock synchronization
use for maintaining the consistency of distributed data or as a part of 
the Kerberos authentication protocol

Naming services
provide an uniform name space across the complex metacomputing
environment

X.500, DNS naming schemes
Distributed file systems and caching

provide an uniform global namespace
support a range of file I/O protocols
require little or no program modification
provide means that enable performance optimization to be 
implemented

23

Metacomputer Design Objectives 
and Issues 

Middleware – The Metacomputing Environment  
Security and authorization

confidentiality: prevent disclosure of data 
integrity: prevent tampering with data 
authorization: verify identity 
accountability: knowing whom to blame

System status and fault tolerance
Resource management and scheduling

efficiently and effectively schedule the applications 
that need to utilize the available resource in the 
metacomputing environment

24

Metacomputer Design Objectives 
and Issues 

Middleware – The Metacomputing Environment  
Programming tools and paradigms

include interface, APIs, and conversion tools so as to provide a
rich development environment 
support a range of programming paradigms 
a suite of numerical and other commonly used libraries should 
be available

User and administrative GUI
intuitive and easy to use interface to the services and 
resources available

Availability
easily port on to a range of commonly used platforms, or use 
technologies that enable it to be platform neutral



5

25

Metacomputing Projects

Globus  (from Argonne National Laboratory)
provides a toolkit on a set of existing components 
to build metacomputing environments

Legion  (from the University of Virginia) 
provides a high-level unified object model out of 
new and existing components to build a 
metasystem

Webflow (from Syracuse University)
provides a Web-based metacomputing environment

26

Globus 
A computational grid

A hardware and software infrastructure to provide dependable, 
consistent, and pervasive access to high-end computational 
capabilities, despite the geographical distribution of both 
resources and users

A layered architecture
high-level global services are built upon essential low-level core 
local services

Globus Metacomputing Toolkit (GMT)
a central element of the Globus system
defines the basic services and capabilities required to construct 
a computational grid
consists of a set of components that implement basic services
provides a bag of services 
only possible when the services are distinct and have well-defined 
interfaces (API)

27

Globus 

The GMT consists of the followings
Resources allocation and process management (GRAM)
Unicast and multicast communications services (Nexus)
Authentication and related security services (GSI)
Distributed access to structure and state information 
(MDS)
Monitoring of health and status of system components 
(HBM)
Remote access to data via sequential and parallel 
interfaces (GASS)
Construction, caching, and location of executables (GEM)

28

Globus 
Administrative hierarchy

no obvious administrative hierarchy
Communication services

Nexus
Support for multimethod communication
Provide an application a single relatively low-level communication API 
to support a wide range of high-level communication protocol 
characteristics

Directory/registration services
Globus Metacomputing Directory Service (MDS)

Provide static and dynamic information about the status of Globus 
system components
Use Lightweight Directory Access Protocol (LDAP) server to store
metacomputing-specific objects 
House information pertaining to the potential computing resource, 
their specifications, and their current availability

29

Globus 
Processes, threads, and concurrency control

Work at process level
Nexus API can be used to construct communication primitive 
between threads
No concurrency control

Time and clocks
No particular time service

Naming services
Use of LDAP, DNS and X.500

Security and authorization
Generic Security Service API (GSI) using an implementation of Secure 
Sockets Layer and X509 certificate as authentication system
Use RSA encryption algorithm and associated public and private keys

30

Globus 
Distributed file systems and caching

Global Access to Secondary Storage (GASS)
Define a global name space via URLs
Provide basic access to remote files via standard I/O 
interface
File cache is used to address bandwidth management issues 
associated with repeated access to remote files
A simple locking protocol for local concurrency control, not 
implement a wide-area cache coherency mechanism

Remote I/O (RIO)
A distributed implementation of MPI-IO, parallel I/O API

Globus Executable Management (GEM)
Enable loading and executing a remote file through GRAM 
using GASS caching calls



6

31

Globus 

System status and fault tolerance
Detection of a fault is a necessary prerequisite to fault 
recovery and fault tolerance
Heartbeat monitor (HBM) as fault detection service
Nexus communication library support for fault detection

Resource management and scheduling
Globus Resource Allocation Manager (GRAM)

Allow jobs to run remotely and provide an API for submitting, 
monitoring, and terminating jobs
Provide local component for resource management
GRAM is responsible for

Parsing and processing the Resource Specific Language (RSL) 
specifications that outline job requests
Enabling remote monitoring and managing of jobs already created
Updating MDS with information regarding the availability of the 
resource it manages 32

Globus 
Programming tools and paradigms

Support MPI, Java, Compositional C++, Simple RPC, 
Perl

User and administrative GUI
Use Web and command line interface

Availability
Available on most version of UNIX

33

Legion 

An object-based metasystem
Organized by classes and metaclasses

Every thing is an object
Classes manage their instances
Users can define their own classes
Core objects

Core objects
Classes and Metaclasses, Host objects, Vault 
objects, Binding Agents
Implementation Objects and Caches, Context 
objects and Context spaces

34

Legion 
Interface Definition Language (IDL)

The set of methods of an object describes its interface
Two state of Legion object

active: run as a process that is accept function invocations.
inert: the object which resides on some stable storage 
(OPR)

Three-tiered naming system
Users refer to objects using human-readable strings, called 
context names
Context objects map context names to LOIDs which are 
location-independent identifier that include an RSA public 
key
A LOID is mapped to an LOA

35

WebFlow

A computational extension of the Web model 
can act as a framework for the wide-area distributed 
computing and metacomputing

The main goal 
build a seamless framework for publishing and reusing 
computational modules on the Web

Three-tier Java-based architecture
The high performance backend tier is implemented 
using the Globus toolkit .

MDS, GRAM, GASS
A high level, visual user interface and job broker for 
Globus

36

WebFlow

The Management Infrastructure - by 
three servelets

Session Manager
Module Manager
Connection Manager

use URL addresses
offer dynamic information about their 
services and current state
communicate with each other via sockets



7

37

Metacomputing Functionality Matrix

Most UNIX and NTMost UNIXMost UNIXAvailability

Applet-based GUIGUI+command-lineGUI+command-lineUser Interface

MPIMPL, BFS+wrappersMany and variedProg. Paradigms

GRAM-basedHost object+LocalGRAM+RSL+LocalResource 
Management

NoneNot available yetHeart-beat monitorFault Tolerance

SSLObject-based with RSAGSI (RSA+X.509 
certs)Security

GASSCustom Legion filesystemGASS+ROMIOFilesystems & 
Caching

LDAP +DNSContext Manger+DNSLDAP +DNS/x.500Naming Services

Not specifiedNot specifiedNot specifiedClock

Process-basedObject/process-basedProcess-basedProcess

MDS - LDAPvia Binding agentsMDS - LDAPDir/Reg. Services

Hierarchical –
Sockets+MPIMMPS – Socket-based Nexus – Low-LevelComm. Service

PeerPeerPeerAdmin. Hierarchy

WebflowLegionGlobusDesign Objective

38

Emerging Metacomputing 
Environments

Java and the Web 
as the communications infrastructure
Java has revolutionized the shape and 
characteristics of the software environments 
for heterogeneous distributed systems
So the developers no longer have to focus on 
aspects such as portability and heterogeneity

39

Metacomputing Trends

Java
CORBA
From a relatively slow start, the development of 
metacomputers is accelerating fast with the 
advent of these new and emerging technologies
The framework of a metacomputing environment 
must be adaptable, malleable, and extensible, 
whatever technology and fashions become 
influential

40

The Impact of Metacomputing

Metacomputing is an infrastructure that 
can bond and unify globally remote and 
diverse resources
At some stage in the future, our computing 
needs will be satisfied in same pervasive and 
ubiquitous manner that we use the 
electricity power grid


