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Introduction
Loosely-coupled distributed systems

message passing
RPC

Tightly-coupled architectures (multi-processor) 
shared memory
simple programming model

Shared memory gives transparent process-to-process 
communication, and easy programming
Distributed shared memory

extended for use in more loosely-coupled architecture
processes shares data transparently across node boundaries
allow parallel programs to execute without modifications
programs are shorter and easier than equivalent message-passing
applications are slower than hand-coded message passing
consistency maintenance problem                                 
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Distributed Shared Memory
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What DSM can Contribute?

Automatic data distribution
Data gets pulled where its need on 
demand
Location transparency

Transparent coherence management
Shared data automatically kept 
consistent

Can build fault tolerance and 
security
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Introduction
DSM vs. Message-Passing

A well built message-passing implementation outperform shared-memory 
Relative costs of communication and computation are important factors

In some cases, DSM can execute faster than message-passing
Main Issues of DSM

Data Consistency
Data Location
Write Synchronization
Double Faulting
Relaxing Consistency
Application/Type-specify Consistency

Network Performance Issues
Other Design Issues

Synchronization
Granularity
Address-Space Structure
Replacement Police
Heterogeneity Support
Fault Tolerance
Memory Allocation
Data Persistence
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Data Consistency
Network latency

caching and consistency algorithms
Three consistency model

strict consistency - “sequential consistency” (Lemport)
loosely consistency - synchronization points (compiler or user)
no consistency - user-level synchronization and consistency

Many older DSM systems - strict consistency
single writer/multiple reader model

need one data locating node
data is replicated on two or more nodes, none has write access
two problem

must locate a copy of the data when it is non-resident
must synchronize accesses to the data, when writing at the same time

But the performance benefits of relaxing the consistency 
model
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Strict Consistency

All writes are instantaneously visible to 
all processes and absolute global time 
order is maintained throughout the DS.

Not at all easy!!!
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Data Consistency - Data Location
Assign an “owner” node to each item of data
The owner is allowed to write to the data
Ownership algorithm

Fixed ownership
each piece of data is assigned a fixed owner
from the address of the data (ex. by hashing )

Dynamic ownership
Manager: not own the data, but track the current owner
Centralized

A node is selected as the “manager” for all the shared data
Distributed

split the ownership information among the nodes
Broadcast

faulting processors send a broadcast message to find the current owner of each data item
O(2K-1)

Dynamic
search “probable” owner of each data item
in worst case, O(p+Klog p)
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Data Consistency –
Write Synchronization

In maintaining a strictly-consistent data set 
Write Broadcast (write-update)

can broadcast writes
too expensive to be used
if there is not a low level broadcast primitive, it’s a problem

Invalidation (write invalidate)
can invalidate all other copies before doing an update
broadcasting is expensive (in large DSM system)
use unicast or multicast rather than broadcast

problem of location
the manager site maintains a “copy-set”
distributing the copy-set data 

invalidation are passed down the tree
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Data Consistency –
Double Faulting

Read & write fault: two network transactions
one to obtain a read-only copy of the page
a second to obtain write access to the page

the page is transmitted twice over the network
Algorithms to solve double faulting problem

Hot Potato
all faults are treated as write faults
the ownership and data are transferred on very fault

Li
transfer ownership on a read fault 
subsequent write fault may be handled locally

Shrewd
a sequence number per copy of a page
use to track where a page has been updated
don’t eliminate the extra network transactions

The crucial factor appears to be the read-to-write ratio of the 
application
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Sequential Consistency

A weaker consistency model

The result of any execution is the same as if 
the (read and write) operations by all 
proceses on the data-store were executed in 
some sequential order and the operations of 
each individual process appear in this 
sequence in the order specified by its 
program.
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Data Consistency –
Relaxing Consistency

Permitting temporary inconsistencies = increasing performance
Memory is “loosely consistent”

If the value returned by a read operation is the value written by 
an update operation to the same object that “could” have 
immediately preceded the read operation in some legal schedule 
of the threads in execution
More than one thread may have write access to the same object, 
provided that the programmer knows that the writes will not 
conflict

Delayed updates
virtual synchrony - message operations appear to be synchronous
semantic knowledge - when it is needed to access or update?
compromise the shared memory concept & increase complexity
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Data Consistency –
Relaxing Consistency

Release Consistency
ordinary & synchronization-related accesses (acquire, 
release)
the “acquire” operation signals that shared data is needed
a processor’s updates after an “acquire” are not guaranteed 
to be performed at other nodes until a “release” is 
performed
When a process does an “acquire”, the data-store will 
ensure that all the local copies of the protected data are 
brought up to date to be consistent with the remote ones if 
needs be.
When a “release” is done, protected data that have been 
changed are propogated out to the local copies of the data-
store.
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Data Consistency –
Relaxing Consistency

Entry Consistency
in a DSM system called Midway 
weaker than other models
it requires explicit annotations to associate synchronization 
object with data
on an “acquire”, only the data associated with the 
synchronization object is guaranteed to be consistent
Each shared variable is associated with a synchronization 
variable. 
When acquiring the synchronization variable, the most 
recent values of its associated shared variables are fetched. 
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Data Consistency –
Relaxing Consistency

Causal Consistency
This model distinguishes between events that are “causally 
related” and those that are not.
If event B is caused or influenced by an earlier event A, 
then causal consistency requires that every other process 
see event A, then event B.

or
Writes that are potentially causally related must be seen 
by all processes in the same order.  Concurrent writes may 
be seen in a different order on different machines (i.e., by 
different processes).
Operations that are not causally related are said to be 
concurrent.
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Data Consistency –
Application/Type-specific Consistency
Problem-oriented shared memory

implement fetch and store operations specialized to the 
particular problem or application
provide a specialized form of consistency and consistency 
maintenance that exploits application-specific semantics
types of objects

synchronization: lock objects, managed using distributed lock system
private: not managed by the runtime, but brought back under the 
control of DSM if referenced remotely
write-once: initialized once and then only read, so may be efficiently
replicated
result: not read until fully updated, use the delayed-updated 
mechanism to maximum benefit
producer consumer: written by one thread, read by a fixed set of
threads

perform “eager object movement”, update are transmitted to the reader 
before they request them

18

Data Consistency –
Application/Type-specific Consistency
Problem-oriented shared memory

types of objects
migratory: accessed by a single thread at a time, integrating the 
movement of the object with the movement of the lock associated 
with the object
write-many: written by many different nodes at the same time, 
sometimes without being read in between, handled using delayed 
updates
read-mostly: updated rarely using broadcasting
general read-write: multiple threads are reading and writing, or no 
hint of object type is given

30% performance improvement is obtained
Programmer’s control

open implementation (meta-protocol)
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Network Performance Issues

Communication latency and bandwidth are so bad that 
affect design decisions of DSM system 

Much larger than a multi-processor
Consistency and cache management (ex, data invalidation)

Recent advance in network
Switching technology
Bandwidth are available over 1 Gbps even over wide-area 
network
Processor speeds is increasing
Latency is still higher than tightly-coupled architecture
Key factor is the computation-to-communication ratio

high ratios are suitable to message-passing mechanism
analogues to the “memory wall” 20

Other Design Issues -
Synchronization

It orders and controls accesses to shared data 
before actually accessing the data
Clouds merges locking with the cache consistency 
protocol
IVY - synchronization primitive (eventcounts) 
Mermaid - P and V operations and events
Munin provides a distributed lock mechanism using 
“proxy objects” to reduce network load
Anderson - locking using an Ethernet-style back-off 
algorithm (instead of spin and wait locks)
Goodman - propose a set of efficient primitive to 
DSM case

21

Other Design Issues - Granularity
When caching objects in local memory

Use fixed block size
The choice of the block size

Cost of communication
The locality of reference in the application
False sharing or Ping-ping effect

Virtual-memory management unit or multiple thereof
The lowest common multiple of hardware-supported page size 
in heterogeneous machines
Memnet - fixed small granularity (chunk = 32byte) 

similar to shared memory multiprocessor system
Mether - a software implementation of Memnet on top of 
SunOS

8K page size
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Other Design Issues –
Address-Space Structure

The arrival of 64-bit processors ⇒ single shared address-space 
systems (single level store)

The system appears as a set of threads executing in a single shared 
distributed address space
Data items always appear at the same addresses on all nodes
A private and a shared region
Security and protection are a major problem

Separate Shared Address Spaces
Divide each process’s address space into different fixed regions
Cloud - O (shared), P(local/user), K(local/kernel)
Objects always appear at the same address, but may not be visible from 
every address space

Shared-Region Organization
How the shared region itself is organized?
Some DSM (IVY, Mether) use a single flat region
Most of DSM use paged segmentation

The shared region consists of disjoint pieces that usually managed separately
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Other Design Issues - Replacement 
Policy and Secondary Storage

A policy to deal with cache overflow
LRU does not work well without modification

invalidated page
read-only page
replicated page
writable page/pages don’t have replicas

(Markatos, Dramitinos) use of main memory in other nodes to 
store pages
(Memnet) reserve part of main memory of each node as 
storage for chunk
(IVY) piggybacking memory-state information on other 
network message
(Feeley) use of global memory for file buffer caching, VM for 
applications, and transactions 24

Other Design Issues -
Heterogeneity Support

Attempts to provide support for heterogeneous systems
Mermaid, CMU’s Mach system, DiSOM

Page-based Heterogeneity
support for different page sizes without considering the data of pages

Mach: use scheduler page size unit
It’s not as simple as it sounds

real heterogeneous-data support (byte-order, word-size)
Endian problem, word size
CMU DSM divide this problem to hardware data-type and software-type

Language-assisted Heterogeneity
DiSOM, object-oriented and operates at the language level

the application programmer should provide customized packing and unpacking 
routines for heterogeneity (marshalling)

Gokhale and Minnich, packing at compile time
load/store is 2-6 times slower
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Other Design Issues –
Fault Tolerance

Most of DSM ignore the fault tolerance issue
DSM system would strongly effect the fault 
tolerance of a system.

N systems are sharing access to a set of data, the failure 
of any one of them could lead to the failure of all the 
connected sites

How do you handle a failed page-fault?
Clouds: a transactional system called Invocation-Based 
Concurrency Control (IBCC) using commit
Wu and Fuchs: incremental checkpointing system based on a 
twin-page disk storage management system
Ouyang and Heiser: two-phase commit protocol
DiSOM: checkpoint-based failure recovery
Casper: shadow paging
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Other Design Issues –
Memory Allocation

The same piece of shared memory 
must not be allocated more than 
once
Amber allocates large chunks of the 
shared address space to each site 
at startup, and has an address-
space server that hands out more 
memory on demand
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Other Design Issues –
Data Persistence

DSM support some form of secondary storage 
persistence for data held in shared memory
It’s not easy to obtain a globally-consistent 
snapshot of the data on secondary storage 
because of the distributed data
Overlap between DSM and database system
Garbage collection: global garbage collection
Naming and location issues
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Conclusions
A useful extra service for a distributed system
Provide a simple programming model for a wide range of parallel 
processing problems
Advantages

no explicit communication is necessary
may be made of locality of reference

Disadvantages
handling of security and protection issues are unclear
fault tolerance may be more difficult to achieve

Choosing between DSM and message-passing is quite difficult
the amount of data exchanged between synchronization points is the 
main indicator
Forin: “… that the amount of data exchanged between synchronization 
points is the main indicator to consider when deciding between the use of 
distributed shared memory and message passing in a parallel application”


