
1

Cluster Computing

2

Lightweight Messaging Systems
Introduction
Latency/Bandwidth Evaluation of Communication
Performance
Traditional Communication Mechanisms for Clusters
Lightweight Communication Mechanisms
Kernel-Level Lightweight Communications
User-Level Lightweight Communications
A Comparison Among Message Passing Systems

3

Introduction

Communication mechanism is one of the most
important part in cluster system

PCs and Workstations become more powerful and fast
network hardware become more affordable
Existing communication software needs to be revisited
in order not to be a severe bottleneck of cluster
communications

Message-passing communication
NOWs are distributed-memory architectures
These distributed-memory architectures are based on
message-passing communication systems

4

Latency/Bandwidth Evaluation of
Communication Performance

Major performance measurements
Performance of communication systems are
mostly measured by two parameters below

Latency, L
deals with the synchronization semantics of a
message exchange

Asymptotic bandwidth, B
deals with the (large, intensive) data transfer
semantics of a message exchange

5

Latency

Purpose
Characterize the speed of underlying system to synchronize
two cooperating processes by a message exchange

Definition
Time needed to send a minimal-size message from a sender
to a receiver

From the instant the sender starts a send operation
To the instant receiver is notified about the message arrival

Sender and receiver are application level processes
Measure the latency, L

Use a ping-pong microbenchmark
L is computed as half the average round-trip time (RTT)
Discard the first few data for excluding “warm-up” effect 6

End-to-end and One-sided
Asymptotic Bandwidth

Purpose
Characterizes how fast a data transfer may occur from a
sender to a receiver
“Asymptotic”: the transfer speed is measured for a very
large amount data

One, bulk, or stream

Definition of asymptotic bandwidth, B
B = S/D
D is the time needed to send S bytes of data from a sender
to a receiver
S must be very large in order to isolate the data transfer
from any other overhead related to the synchronization
semantics

2

7

End-to-end and One-sided
Asymptotic Bandwidth

Measure the asymptotic bandwidth, B
End-to-end

Use a ping-pong microbenchmark to measure the average
round-trip time
D is computed as half the average round-trip time
This measures the transfer rate of the whole end-to-end
communication path

One-sided
Use a ping microbenchmark to measure the average send time
This measures the transfer rate as perceived by the sender
side of the communication path, thus hiding the overhead at
the receiver side
D is computed as the average data transfer time (not divided
by 2)

The value of one-sided is greater than one of end-to-end !!!
8

Throughput

Message Delay, D(S)
D(S) = L + (S – Sm)/B
Sm is the minimal message size allowed by the system
half the round-trip time (ping-pong)
data transfer time (ping)

Definition of throughput, T(S)
T(S) = S/D(S)
the asymptotic bandwidth is nothing but the throughput for
a very large message
A partial view of the entire throughput curve by

B and
Sh where T(Sh) = B / 2

9

Traditional Communication
Mechanisms for Clusters

Interconnection of standard components
They focus on the standardization for
interoperation and portability than efficient use
of resources

TCP/IP , UDP/IP and Sockets
RPC
MPI and PVM
Active Message

10

TCP, UDP, IP, and Sockets

The most standard communication protocols
Internet Protocol (IP)

provides unreliable delivery of single packets to one-hop
distant hosts
implements two basic kinds of QoS

connected, TCP/IP
datagram, UDP/IP

Berkeley Sockets
Both TCP/IP and UDP/IP were made available to the
application level through the API, namely Berkeley Sockets
Network is perceived as a character device, and sockets are
file descriptors related to the device
Its level of abstraction is quite low

11

RPC

Remote Procedure Call by SUN
Enhanced general purpose (specially distributed client-
server applications) network abstraction atop socket
The de facto standard for distributed client-server
applications
Its level of abstraction is high

Familiarity and generality
sequential-like programming

Services are requested by calling procedures with suitable
parameters. The called service may also return a result

hiding any format difference
It hides any format difference across different systems
connected to the network in heterogeneous environment

12

MPI and PVM

General-purpose systems
the general-purpose systems for message passing and
parallel program management on distributed platforms at
the application level, based on available IPC mechanisms

Parallel Virtual Machine (PVM)
provides an easy-to-use programming interface for process
creation and IPC, plus a run-time system for elementary
application management
run-time programmable but inefficient

Message Passing Interface (MPI)
offers a larger and more versatile set of routines than PVM,
but does not offer run-time management systems
greater efficient compared to PVM

3

13

Active Message
One-sided communication paradigm

Whenever the sender process transmits a message, the message
exchange occurs regardless of the current activity of the receiver
process

Reducing overhead
The goal is to reduce the impact of communication overhead on
application performance

Active Message
Eliminates the need of many temporary storage for messages along the
communication path
With proper hardware support, it is easy to overlap communication with
computation
As soon as delivered, each message triggers a user-programmed function
of the destination process, called receiver handler
The receiver handler act as a separate thread consuming the message,
therefore decoupling message management from the current activity of
the main thread of the destination process

14

Active Message Architecture

Hardware

Firmware

Virtual Network

AM API

15

Active Message Communication
Model

16

Lightweight Communication
Mechanisms

Lightweight protocols
Cope with the lack of efficiency of standard communication protocols for
cluster computing

Linux TCP/IP is not good for cluster computing
Performance test in Fast Ethernet

environments
Pentium II 300 MHz, Linux kernel 2.0.29
2 PCs are connected by UTP ported 3Com 3c905 Fast Ethernet

results
latency = 77 µs (socket) / 7 µs (card)
bandwidth

large data stream: 86%
short message (<1500 bytes): less than 50%

Drawbacks of layered protocols
memory-to-memory copy
poor code locality
heavy functional overhead

17

Linux TCP/IP Sockets: Half-Duplex “Ping-Pong”
Throughput with Various NICs and CPUs

18

What We Need for Efficient
Cluster Computing

To implement an efficient messaging system
Choose an appropriate LAN hardware
Tailor the protocols to the underlying LAN hardware
Target the protocols to the user needs

Different users and different application domains may need
different tradeoffs between reliability and performance

Optimize the protocol code and the NIC driver as much as
possible
Minimize the use of memory-to-memory copy operation

e.g. TCP/IP is the layered structure needed memory-to-
memory data movements

4

19

Typical Techniques to Optimize
Communication

Using multiple networks in parallel
Increases the aggregate communication bandwidth
Cannot reduce latency

Simplifying LAN-wide host naming
Addressing conventions in a LAN might be simpler than in a
WAN

Simplifying communication protocol
Long protocol functions are time-consuming and have poor
locality that generates a large number of cache misses
General-purpose networks have a high error rate, but LANs
have a low error rate
Optimistic protocols assume no communication errors and
no congestion

20

Typical Techniques to Optimize
Communication

Avoiding temporary buffering of messages
Zero-copy protocols

remapping the kernel-level temporary buffers into user
memory space
lock the user data structures into physical RAM and let the
NIC access them directly upon communication via DMA
need gather/scatter facility

Pipelined communication path
Some NICs may transmit data over the physical medium
while the host-to-NIC DMA or programmed I/O transfer is
still in progress
The performance improvement is obtained at both latency
and throughput

21

Typical Techniques to Optimize
Communication

Avoid system calls for communication
Invoking a system call is a time-consuming task
User-level communication architecture

implements the communication system entirely at
the user level
all buffers and registers of the NIC are remapped
from kernel space into user memory space
protection challenges in a multitasking environment

Lightweight system calls for communication
Eliminate the need of system calls

save only a subset of CPU registers and do not
invoke the scheduler upon return

22

Typical Techniques to Optimize
Communication

Fast interrupt path
In order to reduce interrupt latency in interrupt-driven
receives, the code path to the interrupt handler of the
network device driver is optimized

Polling the network device
The usual method of notifying message arrivals by
interrupts is time-consuming and sometimes unacceptable
Provides the ability of explicitly inspecting or polling the
network devices for incoming messages, besides interrupt-
based arrival notification

Providing very low-level mechanisms
A kind of RISC approach
Provide only very low-level primitives that can be combined
in various ways to form higher level communication
semantics and APIs in an ‘ad hoc’ way

23

The Importance of
Efficient Collective Communication

To turn the potential benefits of clusters into widespread use
The development of parallel applications exhibiting high enough
performance and efficiency with a reasonable programming effort

Porting problem
An MPI code is easily ported from one hardware platform to
another
But performance and efficiency of the code execution is not
ported across platforms

Collective communication
Collective routines often provide the most frequent and extreme
instance of “lack of performance portability”
In most cases, collective communications are implemented in
terms of point-to-point communications arranged into standard
patterns
This implies very poor performance with clusters
As a result, parallel programs hardly ever rely on collective
routines 24

A Classification of Lightweight
Communication Systems

Classification of lightweight communication systems
kernel-level systems and user-level systems

Kernel-level approach
The messaging system is supported by the OS kernel with a
set of low-level communication mechanisms embedding a
communication protocol
Such mechanisms are made available to the user level
through a number of OS system calls
Fit into the architecture of modern OS providing protected
access
A drawback is that traditional protection mechanisms may
require quite a high software overhead for kernel-to-user
data movement

5

25

A Classification of Lightweight
Communication Systems

User-level approach
Improves performance by minimizing the OS involvement in
the communication path
Access to the communication buffers of the network
interface is granted without invoking any system calls
Any communication layer as well as API is implemented as a
user-level programming library
To allow protected access to the communication devices

single-user network access
unacceptable to modern processing environment

strict gang scheduling
inefficient, intervening OS scheduler

Leverage programmable communication devices
uncommon device

Addition or modification of OS are needed
26

Kernel-level Lightweight
Communications

Industry-Standard API system
Beowulf
Fast Sockets
PARMA2

Best-Performance system
Genoa Active Message MAchine (GAMMA)
Net*

Oxford BSP Clusters
U-Net on Fast Ethernet

27

Industry-Standard API Systems

Portability and reuse
The main goal besides efficiency is to comply an
industry-standard for the low-level communication
API
Does not force any major modification to the
existing OS, a new communication system is simply
added as an extension of the OS itself

Drawback
Some optimization in the underlying communication
layer could be hampered by the choice of an
industry standard

28

Industry-Standard API Systems

Beowulf
Linux-based cluster of PCs
channel bonding

two or more LANs in parallel
topology

two-dimensional mesh
two Ethernet cards on each node are
connected to horizontal and vertical line
each node acts as a software router

29

Industry-Standard API Systems

Fast Sockets
implementation of TCP sockets atop an
Active Message layer
socket descriptors opened at fork time are
shared with child processes
poor performance: UltraSPARC 1 connected
by Myrinet

57.8 µs latency due to Active Message
32.9 MB/s asymptotic bandwidth due to
SBus bottleneck

30

Industry-Standard API Systems

PARMA2

To reduce communication overhead in a cluster of
PCs running Linux connected by Fast Ethernet

eliminate flow control and packet acknowledge from
TCP/IP
simplify host addressing

Retain BSD socket interface
easy porting of applications (ex. MPICH)
preserving NIC driver

Performance: Fast Ethernet and Pentium 133
74 µs latency, 6.6 MB/s (TCP/IP)
256 µs latency for MPI/PARMA (402 µs for MPI)
182 µs latency for MPIPR

6

31

Best-Performance Systems

Simplified protocols designed according to a
performance-oriented approach
Genoa Active Message Machine (GAMMA)

Active Message-like communication abstraction
called Active Ports allowed a zero-copy optimistic
protocol
Provide lightweight system call, fast interrupt
path, and pipelined communication path
Multiuser protected access to network
Unreliable: raise error condition without recovery
Efficient performance (100base-T)

12.7 µs latency, 12.2 MB/s asymptotic bandwidth
32

Best-Performance Systems

Net*
A communication system for Fast Ethernet based upon a
reliable protocol implemented at kernel level
Remap kernel-space buffers into user-space to allow direct
access
Only a single user process per node can be granted network
access
Drawbacks

no kernel-operated network multiplexing is performed
user processes have to explicitly fragment and reassemble
messages longer than the Ethernet MTU

Very good performance
23.3 µs latency and 12.2 MB/s asymptotic bandwidth

33

Best-Performance Systems
Oxford BSP Clusters

Place some structural restriction on communication traffic by allowing
only some well known patterns to occur

good to optimizing error detection and recovery
A parallel program running on a BSP cluster is assumed to comply with the
BSP computational model
Protocols of BSP clusters

destination scheduling is different from processor to processor
switched network
using exchanged packets as acknowledgement packets

BSPlib-NIC
the most efficient version of the BSP cluster protocol has been implemented
as a device driver called BSPlib-NIC
remapping the kernel-level FIFOs of the NIC into user memory space to allow
user-level access to the FIFOs
no need to “start transmission” system calls along the whole end-to-end
communication path
Performance (100base-T) 29 µs latency, 11.7 MB/s asymptotic bandwidth

34

Best-Performance Systems

U-Net on Fast Ethernet
Require a NIC’s programmable onboard processor
The drawback is the very raw programming
interface
Performance (100base-T)

30 µs one-way latency, 12.1 MB/s asymptotic
bandwidth

35

U-Net

User-level network interface for parallel and
distributed computing
Design goal

Low latency, high bandwidth with small messages
Emphasis protocol design and integration
flexibility
Portable to off-the-shelf communication hardware

Role of U-Net
Multiplexing
Protection
Virtualization of NI

36

Traditional Communication
Architecture

7

37

U-Net Architecture

38

Building Blocks of U-Net

39

User-Level Lightweight
Communications

User-level approach
Derived from the assumption that OS
communications are inefficient by definition
The OS involvement in the communication path is
minimized

Three solutions to guarantee protection
Leverage programmable NICs

support for device multiplexing
Granting network access to one single trusted user

not always acceptable
Network gang scheduling

exclusive access to the network interface
40

User-Level Lightweight
Communications

Basic Interface for Parallelism (BIP)
Implemented atop a Myrinet network of Pentium PCs running
Linux
Provide both blocking and unblocking communication primitives
Send-receive paradigm implemented according to rendezvous
communication mode
Policies for performance

a simple detection feature without recovery
fragment any send message for pipelining
get rid of protected multiplexing of the NIC
the register of the Myrinet adapter and the memory regions are fully
exposed to user-level access

Performance
4.3 µs latency, 126MB/s bandwidth
TCP/IP over BIP: 70 µs latency, 35MB/s bandwidth
MPI over BIP: 12 µs latency, 113.7MB/s bandwidth

41

User-Level Lightweight
Communications

Fast Messages
Active Message-like system running on Myrinet-connected
clusters
Reliable in-order delivery with flow control and
retransmission
Works only in single-user mode
Enhancement in FM 2.x

the programming interface for MPI
gather/scatter features
MPICH over FM: 6 µs

Performance
12 µs latency, 77 MB/s bandwidth (FM 1.x, Sun SPARC)
11 µs latency, 77 MB/s bandwidth (FM 2.x, Pentium)

42

User-Level Lightweight
Communications

Hewlett-Packard Active Messages (HPAM)
an implementation of Active Messages on a FDDI-
connected network of HP 9000/735 workstations
provides

protected, direct access to the network by a single
process in mutual exclusion
reliable delivery with flow control and
retransmission.

Performance (FDDI)
14.5 µs latency, 12 MB/s asymptotic bandwidth

8

43

User-Level Lightweight
Communications

U-Net for ATM
User processes are given direct protected access to the
network device with no virtualization
The programming interface of U-Net is very similar to the
one of the NIC itself
Endpoints

The interconnect is virtualized as a set of ‘endpoints’
Endpoint buffers are used as portions of the NIC’s
send/receive FIFO queues
Endpoint remapping is to grant direct, memory-mapped,
protected access

Performance (155 Mbps ATM)
44.5 µs latency, 15 MB/s asymptotic bandwidth

44

User-Level Lightweight
Communications

Virtual Interface Architecture (VIA)
first attempt to standardize user-level communication
architectures by Compaq, Intel, and Microsoft
specifies a communication architecture extending the basic U-
Net interface with remote DMA (RDMA) services
characteristics

SAN with high bandwidth, low latency, low error rate, scalable, and
highly available interconnects
error detection in communication layer
protected multiplexing in NIC among user processes
reliability is not mandatory

M-VIA
the first version of VIA implementation on Fast/Gigabit Ethernet
kernel-emulated VIA for Linux
Performance (100base-T)

23 µs latency, 11.9 MB/s asymptotic bandwidth

45

A Comparison Among Message
Passing Systems

Clusters vs. MPPs
Standard Interface approach vs.
other approach
User level vs. kernel-level

46

“Ping-Pong” Comparison of
Message Passing Systems

