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• MPI-I/O
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– Derived data types and file views
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• MPI-I/O (cont)
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– File interoperability
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INTRODUCTION
• What is parallel I/O?

– Multiple processes accessing a single file

INTRODUCTION
• What is parallel I/O?

– Multiple processes accessing a single file
– Often, both data and file access is non-

contiguous
• Ghost cells cause non-contiguous data access

• Block or cyclic distributions cause non -contiguous 
file access

Non-Contiguous Access

Local Mem File layout
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INTRODUCTION
• What is parallel I/O?

– Multiple processes accessing a single file
– Often, both data and file access is non-

contiguous
• Ghost cells cause non-contiguous data access
• Block or cyclic distributions cause non -contiguous 

file access

– Want to access data and files with as few I/O 
calls as possible

INTRODUCTION (cont)

• Why use parallel I/O?
– Many users do not have time to learn the 

complexities of I/O optimization

INTRODUCTION (cont)
Integer dim

parameter (dim=10000)

Integer*4 out_array(dim)

OPEN (fh,filename,UNFORMATTED)

WRITE(fh) (out_array(I), I=1,dim)

rl = 4*dim

OPEN (fh, filename, DIRECT, RECL=rl)

WRITE (fh, REC=1) out_array

INTRODUCTION (cont)

• Why use parallel I/O?
– Many users do not have time to learn the 

complexities of I/O optimization
– Use of parallel I/O can simplify coding

• Single read/write operation vs. multiple read/write 
operations

INTRODUCTION (cont)

• Why use parallel I/O?
– Many users do not have time to learn the 

complexities of I/O optimization
– Use of parallel I/O can simplify coding

• Single read/write operation vs. multiple read/write 
operations

– Parallel I/O potentially offers significant 
performance improvement over traditional 
approaches

INTRODUCTION (cont)

• Traditional approaches
– Each process writes to a separate file

• Often requires an additional post -processing step
• Without post -processing, restarts must use same 

number of processor

– Result sent to a master processor, which 
collects results and writes out to disk

– Each processor calculates position in file and 
writes individually
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INTRODUCTION (cont)

• What is MPI-I/O?
– MPI-I/O is a set of extensions to the original 

MPI standard
– This is an interface specification: It does NOT 

give implementation specifics
– It provides routines for file manipulation and 

data access
– Calls to MPI-I/O routines are portable across a 

large number of architectures

MPI-I/O

• Terms and Definitions
– Displacement - Number of bytes from the 

beginning of a file
– etype - unit of data access within a file
– filetype - datatype used to express access 

patterns of a file
– file view - definition of access patterns of a file

• Defines what parts of a file are visible to a process

MPI-I/O
• Terms and Definitions

– Offset -Position in the file, relative to the 
current view, expressed in terms of number of 
etypes

– file pointers - offsets into the file maintained by 
MPI

• Individual file pointer - local to the process that 
opened the file

• Shared file pointer - shared (and manipulated) by the 
group of processes that opened the file

FILE MANIPULATION

• MPI_FILE_OPEN(Comm, filename, mode, 
info, fh, ierr)
– Opens  the file identified by filenameon each 

processor in communicator Comm
– Collective over this group of processors
– Each processor must use same value for mode

and reference the same file
– info is used to give hints about access patterns

FILE MANIPULATION
• MODES

– MPI_MODE_CREATE
• Must be used if file does not exist

– MPI_MODE_RDONLY
– MPI_MODE_RDWR
– MPI_MODE_WRONLY
– MPI_MODE_EXCL

• Error if creating file that already exists
– MPI_MODE_DELETE_ON_CLOSE
– MPI_MODE_UNIQUE_OPEN
– MPI_MODE_SEQUENTIAL
– MPI_MODE_APPEND

Hints• Hints can be passed to the I/O implementation via 
the info argument

• MPI_Info info
• MPI_Info_create (&info)
• MPI_Info_set (info, key, value)

– key is a  string specifying the hint to be applied
– value is a string specifying the value key is to be set to

• There are 4 pre-defined keys
• The implementation may or may not make use of 

hints
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Hints

• striping_factor
– The number of I/O devices to be used

• striping_unit
– The number of bytes per block

• collective_buffering
– true or false: whether collective buffering should be performed

• cb_block_size
– Block size to be used for buffering (nodes access data in chunks

this size
• cb_buffer_size

– The total buffer size that should be used for buffering (often block 
size times # nodes)

FILE MANIPULATION (cont)

• MPI_FILE_CLOSE (fh)
– This routine synchronizes the file state and then 

closes the file
– The user must ensure all I/O routines have 

completed before closing the file
– This is a collective routine (but not 

synchronizing)

DERIVED DATATYPES & 
VIEWS

• Derived datatypes are not part of MPI-I/O
• They are used extensively in conjunction 

with MPI-I/O
• A filetype is really a datatype expressing the 

access pattern of a file
• Filetypes are used to set file views

DERIVED DATATYPES & 
VIEWS

• Non-contiguous memory access
• MPI_TYPE_CREATE_SUBARRAY

– NDIMS - number of dimensions
– ARRAY_OF_SIZES - number of elements in each dimension of 

full array
– ARRAY_OF_SUBSIZES - number of elements in each dimension 

of sub-array
– ARRAY_OF_STARTS - starting position in full array of sub-array 

in each dimension
– ORDER - MPI_ORDER_(C or FORTRAN)
– OLDTYPE - datatype stored in full array
– NEWTYPE - handle to new datatype

NONCONTIGUOUS MEMORY 
ACCESS

0,0 0,101

101,0 101,101

1,1 1,100

101,1 100,100

NONCONTIGUOUS MEMORY 
ACCESS

• INTEGER sizes(2), subsizes(2), starts(2), dtype, ierr
• sizes(1) = 102
• sizes(2) = 102
• subsizes(1) = 100
• subsizes(2) = 100
• starts(1) = 1
• starts(2)= 1
• CALL MPI_TYPE_CREATE_SUBARRAY(2,sizes,subsizes,starts, 

MPI_ORDER_FORTRAN,MPI_REAL8,dtype,ierr)
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NONCONTIGUOUS FILE 
ACCESS

• MPI_FILE_SET_VIEW(
– FH,
– DISP,
– ETYPE,
– FILETYPE,
– DATAREP,
– INFO,
– IERROR)

header

100 bytes

Memory  layout

NONCONTIGUOUS FILE 
ACCESS

• The file has ‘holes’ in it from the 
processor’s perspective

NONCONTIGUOUS FILE 
ACCESS

• The file has ‘holes’ in it from the 
processor’s perspective
– MPI_TYPE_CONTIGUOUS(NUM,OLD,NEW,IERR)

• NUM - Number of contiguous elements
• OLD - Old data type
• NEW - New data type

– MPI_TYPE_CREATE_RESIZED(OLD,LB,EXTENT,
NEW, IERR)

• OLD - Old data type
• LB - Lower Bound
• EXTENT - New size
• NEW - New data type

‘Holes’ in the file
Memory layout

File layout (2 ints followed by 3 ints)

CALL MPI_TYPE_CONTIGUOUS(2, MPI_INT, CTYPE, IERR)

DISP = 4

LB = 0

EXTENT=5*4

CALL MPI_TYPE_CREATE_RESIZED(CTYPE,LB,EXTENT,FTYPE,IERR)

CALL MPI_TYPE_COMMIT(FTYPE, IERR)

CALL MPI_FILE_SET_VIEW(FH,DISP,MPI_INT,FTYPE,’native’,MPI_INFO_N ULL, IERR)

NONCONTIGUOUS FILE 
ACCESS

• The file has ‘holes’ in it from the 
processor’s perspective

• A block-cyclic data distribution

NONCONTIGUOUS FILE 
ACCESS

• The file has ‘holes’ in it from the 
processor’s perspective

• A block-cyclic data distribution
– MPI_TYPE_VECTOR(

• COUNT - Number of blocks
• BLOCKLENGTH - Number of elements per block
• STRIDE - Elements between start of each block
• OLDTYPE - Old datatype
• NEWTYPE - New datatype)
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Block-cyclic distribution
P0 P1 P2 P3

File layout (blocks of 4 ints)

CALL MPI_TYPE_VECTOR(3, 4, 16, MPI_INT, FILETYPE, IERR)

CALL MPI_TYPE_COMMIT (FILETYPE, IERR)

DISP = 4 * 4 * MYRANK

CALL MPI_FILE_SET_VIEW (FH, DISP, MPI_INT, FILETYPE, ‘native’, 
MPI_INFO_NULL, IERR)

NONCONTIGUOUS FILE 
ACCESS

• The file has ‘holes’ in it from the 
processor’s perspective

• A block-cyclic data distribution
• multi-dimensional array access

NONCONTIGUOUS FILE 
ACCESS

• The file has ‘holes’ in it from the 
processor’s perspective

• A block-cyclic data distribution
• multi-dimensional array access

– MPI_TYPE_CREATE_SUBARRAY()

Distributed array access

(0,0) (0,199)

(199,0) (199,199)

Distributed array access
Sizes(1) = 200

sizes(2) = 200

subsizes(1) = 100

subsizes(2) = 100

starts(1) = 0

starts(2) = 0

CALL MPI_TYPE_CREATE_SUBARRAY(2, SIZES, SUBSIZES, STARTS, 
MPI_ORDER_FORTRAN, MPI_INT, FILETYPE, IERR)

CALL MPI_TYPE_COMMIT(FILETYPE, IERR)

CALL MPI_FILE_SET_VIEW(FH, 0, MPI_INT, FILETYPE, ‘NATIVE’, 
MPI_INFO_NULL, IERR)

NONCONTIGUOUS FILE 
ACCESS

• The file has ‘holes’ in it from the 
processor’s perspective

• A block-cyclic data distribution
• multi-dimensional array distributed with a 

block distribution
• Irregularly distributed arrays
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Irregularly distributed arrays

• MPI_TYPE_CREATE_INDEXED_BLOC
K
– COUNT - Number of blocks
– LENGTH - Elements per block
– MAP - Array of displacements
– OLD - Old datatype
– NEW - New datatype

Irregularly distributed arrays

0   1    2         4            7                 11  12        15                      20         22

0   1    2    4    7   11  12  15  20  22

MAP_ARRAY

Irregularly distributed arrays
CALL MPI_TYPE_CREATE_INDEXED_BLOCK (10, 1, FILE_MAP, MPI_INT, 
FILETYPE, IERR)

CALL MPI_TYPE_COMMIT (FILETYPE, IERR)

DISP = 0

CALL MPI_FILE_SET_VIEW (FH, DISP, MPI_INT, FILETYPE, ‘native’, 
MPI_INFO_NULL, IERR)

DATA ACCESS
Explicit
Offsets

Individual
File Pointers

Shared 
File Pointers

Blocking

Non-Blocking

Non-Collective
Collective

COLLECTIVE I/O

Memory layout on 4 processor

File layout

MPI temporary memory buffer

EXPLICIT OFFSETS

• Parameters
– FH - File handle

– OFFSET - Location in file to start
– BUF - Buffer to write from/read to

– COUNT - Number of elements
– DATATYPE - Type of each element

– STATUS - Return status (blocking)
– REQUEST - Request handle (non -blocking,non-

collective)
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EXPLICIT OFFSETS (cont)

• I/O Routines
– MPI_FILE_(READ/WRITE)_AT ()

– MPI_FILE_(READ/WRITE)_AT_ALL ()
– MPI_FILE_I(READ/WRITE)_AT ()

– MPI_FILE_(READ/WRITE)_AT_ALL_BEGIN ()
– MPI_FILE_(READ/WRITE)_AT_ALL_END (FH, 

BUF, STATUS)

EXPLICIT OFFSETS
header

50 bytes

int buff[3];

count = 5;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen, 
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = 58;
MPI_File_open (MPI_COMM_WORLD, filename, 

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write_at (fh, 5, buff, 3, MPI_INT, &status);

IDIVIDUAL FILE POINTERS

• Parameters
– FH - File handle

– BUF - Buffer to write to/read from
– COUNT - number of elements to be read/written

– DATATYPE - Type of each element
– STATUS - Return status (blocking)

– REQUEST - Request handle (non -blocking, non-
collective)

INDIVIDUAL FILE POINTERS

• I/O Routines
– MPI_FILE_(READ/WRITE) ()
– MPI_FILE_(READ/WRITE)_ALL ()
– MPI_FILE_I(READ/WRITE) ()
– MPI_FILE_(READ/WRITE)_ALL_BEGIN()
– MPI_FILE_(READ/WRITE)_ALL_END (FH, 

BUF, STATUS)

INDIVIDUAL FILE POINTERS

int buff[12];

count = 6;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen, 
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = 50 + myrank*8;
MPI_File_open (MPI_COMM_WORLD, filename, 

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buff, 6, MPI_INT, &status);
MPI_File_write(fh, buff, 6, MPI_INT, &status);

fp0 fp1 fp0 fp1 fp0 fp1

SHARED FILE POINTERS

• All processes must have the same view
• Parameters

– FH - File handle

– BUF - Buffer
– COUNT - Number of elements

– DATATYPE - Type of the elements
– STATUS - Return status (blocking)

– REQUEST - Request handle (Non-blocking, non-
collective
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SHARED FILE POINTERS

• I/O Routines
– MPI_FILE_(READ/WRITE)_SHARED ()
– MPI_FILE_I(READ/WRITE)_SHARED ()
– MPI_FILE_(READ/WRITE)_ORDERED ()
– MPI_FILE_(READ/WRITE)_ORDERED_BE

GIN ()
– MPI_FILE_(READ/WRITE)_ORDERED_EN

D (FH, BUF, STATUS)

SHARED FILE POINTERS
comm = MPI_COMM_WORLD;
MPI_Comm_rank (comm, &rank);
amode = MPI_MODE_CREATE |

MPI_MODE_WRONLY;
…..
MPI_File_open (comm, logfile, amode,

MPI_INFO_NULL, &fh);
…..
do some computing
if (some event occurred) {

sprintf(buf, “Process %d: %s\n”, rank, event);
size = strlen(buf);
MPI_File_write_shared (fh, buf, size
MPI_CHAR, &status);

}
…..

int buff[100];

MPI_File_open (comm, logfile, amode,
MPI_INFO_NULL, &fh);

MPI_File_write_ordered (fh, buf, 100,
MPI_INT, &status);

P0 P1 Pn-1P2

100 100 100 100

FILE INTEROPERABILITY

• MPI puts no constraints on how an 
implementation should store files

• If a file is not stored as a linear byte stream, 
there must be a utility for converting the file 
into a linear byte stream

• Data representation aids interoperability

FILE INTEROPERABILITY 
(cont)

• Data Representation
– Native - Data stored exactly as it is in memory.
– Internal - Data may be converted, but can 

always be read by the same MPI 
implementation, even on different architectures

– external32 - This representation is defined by 
MPI.  Files written in external32 format can be 
read by any MPI on any machine

FILE INTEROPERABILITY 
(cont)

• Some MPI-I/O implementations (Romio), 
created files are no different than those 
created by the underlying file system.

• This means normal Posix commands (cp, 
rm, etc) work with files created by these 
implementations

• Non-MPI programs can read these files

GOTCHAS - Consistency & 
Semantics

• Collective routines are NOT synchronizing
• Output data may be buffered

– Just because a process has completed a write does not 
mean the data is available to other processes

• Three ways to ensure file consistency:
– MPI_FILE_SET_ATOMICITY ()

– MPI_FILE_SYNC ()
– MPI_FILE_CLOSE ()
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CONSISTENCY & 
SEMANTICS

• MPI_FILE_SET_ATOMICITY ()
– Causes all writes to be immediately written to 

disk.  This is a collective operation
• MPI_FILE_SYNC ()

– Collective operation which forces buffered data 
to be written to disk

• MPI_FILE_CLOSE () 
– Writes any buffered data to disk before closing 

the file

GOTCHA!!!
CALL MPI_FILE_OPEN (…, FH)

CALL 
MPI_FILE_SET_ATOMICITY 
(FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_FILE_READ_AT (FH, 
100, …)

CALL MPI_FILE_OPEN (…, FH)

CALL 
MPI_FILE_SET_ATOMICITY 
(FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_FILE_READ_AT (FH, 
0, …)

GOTCHA!!!
CALL MPI_FILE_OPEN (…, FH)

CALL 
MPI_FILE_SET_ATOMICITY 
(FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 
100, …)

CALL MPI_FILE_OPEN (…, FH)

CALL 
MPI_FILE_SET_ATOMICITY 
(FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH, 
0, …)

GOTCHA!!!
CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH, 
100, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH, 
0, …)

GOTCHA!!!
CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
0, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH, 
100, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH, 
100, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH, 
0, …)

CONCLUSIONS

• MPI-I/O potentially offers significant 
improvement in I/O performance

• This improvement can be attained with 
minimal effort on part of the user
– Simpler programming with fewer calls to I/O 

routines
– Easier program maintenance due to simple API
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Recommended references

• MPI -The Complete Reference Volume 1, The 
MPI Core

• MPI -The Complete Reference Volume 2, The 
MPI Extensions

• USING MPI: Portable Parallel Programming with 
the Message-Passing Interface

• Using MPI-2: Advanced Features of the Message-
Passing Interface


