MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT

OF

COMPUTER ENGINEERING

CENG 331

COMPUTER ORGANIZATION

TERM PROJECT

“NUMA (Non-Uniform Memory Access)”

FATİH ÜNAL

1250885

Section 2

INDEX

Abstract

1

1-Introduction

1.1-Introduction to Multiprocessor Systems

2

Diagrams about MIMD Architecture Structure and Classification

4

Diagram about Classification Tables of Architectures

4

1.2-Distributed Shared Memory Systems

5

Diagram of UMA Architecture and NUMA architecture

5
1.3-Introduction NUMA Multiprocessors

6

Diagram about Structure of NUMA Architecture

7

Diagram about Remote Load Mechanism in NUMA

7
2-NUMA

7

2.1-NUMA Systems

7

Diagram about Structure of CC-NUMA Architecture

8
2.2-How NUMA Works

9

2.3-Architectural Background of NUMA Machines

9

Diagrams about Cache Coherence Problem

11

Diagram about Memory Replacement Mechanism in UMA and NUMA
11

2.4-NUMA Systems Versus UMA Systems

11

Diagrams about Memory Models for UMA and NUMA Architectures
12

2.5-NUMA Systems Versus SMP Systems

12

Diagram about Comparisons between NUMA and SMP Architectures
14

2.6-NUMA Today

14

Diagrams about 32 Processor NUMA Machine Configuration

15

Vendor Table

16

2.7-Drawbacks of NUMAs

16

2.8-Frequently Asked Questions

17

2.9-Frequently Given Answers

17

3-References

20
Abstract

In this term project I explain the NUMA (Non-Uniform Memory Architecture) system. Firstly, in the introduction part I gave brief explanation about multiprocessor systems, their classification types according to shared memory and instruction types. There are three subsequent sections in that part. Secondly, in the second part I explained the NUMA architecture in detail. There are 9 sections in that part each of them examines the subject from different aspects. There is a FAQ section for basic questions about the architecture. In the last part there are references from which I make use of during the preparation of the project. Finally I believe that this reading will help you to acquire a profound knowledge about this topic.

1-INTRODUCTION

1.1-Introduction to Multiprocessor Systems

Computer architects’ main aim is to create powerful computers. One solution is connecting smaller processors with low capability and to compose a larger processor with high capability. This idea is the origin of the multiprocessors. Multiprocessors must be flexible for different purposes: number of processors in a multiprocessor machine varies; also its software and hardware design must be scalable. If a hardware failure occurs in a multiprocessor system, for example a processor in the machine fails, the machine continues to work without any corruption with its working processors, its software design also helps the machine to continue work without intervention. Multiprocessors have higher performance than any other uniprocessor and they are the most cost effective processors among the others. They obtain a significant percentage in the market place and many server systems uses multiprocessors nowadays.

High performance in multiprocessors is defined as higher throughput for unit time. This aim is in contradiction with to process a single task in a multiprocessor system. In order to define ‘processing a single task in a multiprocessor system’ we use the term ‘parallel processing’.

The normal usage of multiprocessor systems is to achieve high performance systems, load balancing and high availability systems or any combination of them. There is a multidimensional spectrum of multiprocessor systems. To explore this spectrum, here are key questions that drive the designs of multiprocessors:

· Is memory shared between processors?

· How many processes are allowed per processor?

· How do processes communicate?

· Can processes move from processor to processor?

· Can resources move from place to place?

· What are the shared resources?

· How many processors are in the system?

Computer systems may have multiple CPU's and multiple memories, and any code running on any processor may access any location in memory. Also there are constraints and protection mechanisms. While some of the multiple processor systems share the workload equally among its processors, the others assign different tasks to different processors’ of it.

[image: image19.jpg]
Limiting effect of number of processors to speed up

We can think multiprocessor systems as a communication network; it is a good model for abstraction. This network system model connects the memories and processors each other and governs the message traffic, also may prevent some message transactions. If the memories are used individually by each processor, this type of multiprocessor system is called shared memory systems, if the memories used by processors at a high level, -access to different memories in the system is allowed- we can classify such systems as distributed systems.

Another aspect to this subject is symmetrical multiprocessor; workload is shared between the processors of the multiprocessor system. In that type of systems, processors have the same design and instruction set architecture. Another approach is one master and others slave multiprocessor systems in which governs the processes and assigns special tasks to slave processors. In today’s computer systems the I/O devices are seen as secondary processors, which are controlled by operating system.

Operating systems for multiprocessor systems slightly differs from the operating systems of the uniprocessor systems. Main difference is that: in a uniprocessor system, when the processor is ready, there is only one task in the ready list of the operating system that it can accomplish, whereas in the multiprocessor system there are many tasks in the ready list of the operating system that can feed every processor in the system. This multitasking mechanism explains why Unix has been successfully supported by a large number of multiprocessor systems.

If the operating system works on one processor and the other user application program works on other processors, this type of a machine is designed on asymmetrical model. Because the processor on which the operating system works, is the one that control others. If some application programs can work on the processor that has the control, then we can call it as primary processor and we can call the others as coprocessor.
Another classification method is based on the processing method of instruction set and data. There are four architecture designs for this classification:

· SISD (Single Instruction Single Data) architecture

· SIMD (Single Instruction Multiple Data) architecture

· MISD (Multiple Instruction Single Data) architecture

· MIMD (Multiple Instruction Multiple Data) architecture

SISD architecture is the simple uniprocessor architecture. SIMD architecture includes array processors, which exploits spatial parallelism. Vector machines on which a single instruction operates on multiple data can be included into the SIMD architecture classification. The MIMD architecture classification includes parallel processing architectures. Finally there are no meaningful architectures in the MISD classification to be explained here.

[image: image1.png]
Classification of MIMD computers

[image: image15.jpg][image: image16.jpg]
Structure of Shared Memory MIMD

Structure of Distributed Memory MIMD
Parallel processing architectures (MIMD architecture machines) can be classified into

two categories: shared memory machines and distributed memory machines. This classification depends on how the interaction between the processors of the system is supported and continued. In shared memory machine systems, the shared memory space is used to provide interconnection among the processors. In distributed memory machine systems, processors communicate between them with explicit message send and receive mechanism. Shared memory machine systems can be further classified into two categories:

· Uniform Memory Access (UMA) machines (known as centralized shared memory)

· Non-Uniform Memory Access (NUMA) machines (known as distributed shared memory)

[image: image2.png]
Classification tables

1.2-Distributed Shared Memory Systems

In distributed shared memory machines, as we can derive from its name, the shared memory is distributed across the different processors. Namely, the shared memory in each processor altogether forms the global shared address space of the machine. The part of the shared memory, which resides in a processor's local memory location, can be accessed faster with a lower latency than a location in a remote processor's shared memory location. So the memory access time is non-uniform for local and remote shared memory locations. Such architecture is therefore called Non-Uniform Memory Access (NUMA) architecture.

Processors with a single address space, which are sometimes called as shared memory processors, offer a single memory address space that all processors share. Processors communicate through shared variables in memory. Moreover all processors are capable of accessing any memory location with loads and stores.

[image: image3.png]
Simple diagram of Uniform Memory Access and Non-Uniform Memory Access

While processors operating in parallel with shared data they also need to coordinate, otherwise, one processor would try to start working on the data before another processor is finished its work with it. This coordination system is called synchronization. If sharing is supported with a single address space, synchronization must also be supported with separate mechanism. One approach for this problem is to use a lock: only one processor at a time can acquire the lock, and other processors interested in shared data must wait until the original processor unlocks the data.

Single address space multiprocessors are designed in two styles. In the first one, it takes the same time to access main memory no matter which processor requests it and no matter which word is asked. Such machines are called uniform memory access (UMA) multiprocessors or symmetric multiprocessors (SMP) multiprocessors. In the second style, memory access durations vary depending on which processor asks for which word. Such machines are called non-uniform memory access (NUMA) multiprocessors. There are more software challenges to get the highest performance from a NUMA multiprocessor than a UMA multiprocessor, but NUMA machines can scale to larger sizes and hence they have potentially higher performance than others.

[image: image4.png]
Number of processors according to categories

1.3-Introduction NUMA Multiprocessors

The traditional model for multiprocessor architecture model is the symmetric multiprocessor (SMP). In this model, each processor has equal chance to access to memory and I/O. As more processors are added, the processor bus got stuck and it becomes a limitation for the system performance.

System designers now prefer to use non-uniform memory access (NUMA) architecture so as to increase processor speed without increasing the load on the processor buses. The architecture is called non-uniform because each processor in the system is close to some parts of memory locations and farther away from other parts of memory locations. The processor quickly access to the memory it is close to with less latency, whereas it can take longer to access to memory parts that are farther away, its latency is significantly higher. In a NUMA system, CPUs are arranged in smaller system groups, which is called nodes. Each node has its own processors and memory, and it is connected to the larger system, other parts of the system, through a cache-coherent interconnect bus.

The system tries to improve performance by scheduling threads on processors that are in the same node as the memory being used by them commonly. It also aims to satisfy memory allocation requests from within the node to solve the latency problem, but will allocate memory from other nodes if it is necessary. It also provides an API (Application Programming Interface) in order to make the topology of the system available to application programs. The performance of the applications can be improved by using the NUMA functions which provides optimize scheduling and memory usage.

[image: image17.jpg][image: image18.jpg]

Structure of NUMA architecture and remote load mechanism in NUMA
2-NUMA

2.1-NUMA Systems

NUMA is a hardware architecture aimed at enhanced scalability and performance for systems with multiple CPUs. In general, as the number of CPUs in the system increases, the performance cost increases so as to coordinate their access to shared memory. With the much faster CPUs, larger memories, and increasing demands for memory transfers from multiple CPUs; the hardware bus reached its limit speed. Because of these key factors, increment in the number of processors, which are added in Symmetric Multiprocessor (SMP) configurations with large numbers of CPUs, causes a decline in the performance of the system.

NUMA, which stands for Non-Uniform Memory Access, works out this issue by dividing the main hardware elements such as processors and memory, into “building blocks”. These building blocks often –this number is changeable- contain four CPUs and called with different names in different vendor's implementations. While all CPUs can access all memory locations, local access that is access within a building block, is much faster than remote access to pages in other building blocks.

Because the cache makes extensive use of shared memory for example: in database buffers, the speed of memory access directly related on the cache performance. If the latency of a remote access is much higher than that of a local access, then the cache performance on a NUMA system may be significantly worse than the cache performance on a similar size SMP (symmetric multiprocessing) system.

On a multi-processor system the processors normally share the same bus to the memory and to the I/O devices. This means that all CPUs in the system are subjected to the same latency and bandwidth restrictions when accessing the system's memory and I/O channels. Uniform Memory Access (UMA) is a term that is sometimes used to describe this type of system architecture. One way to solve this bottleneck is to design a system, which is built from SMP blocks. Each of these blocks has a limited number of CPUs, memory arrays and I/O ports. Also a second level bus or switch is added to connect these blocks. Non-Uniform Memory Access (NUMA) is the term used to describe this type of system architecture because it results in a bandwidth and latency difference. This difference depends on whether a particular CPU accesses memory and I/O resources locally it means that it accesses in the same building block where the CPU resides or remotely namely, it accesses in another building block.

If all CPUs had equal access to all memory locations of the system, this type of system has uniform memory access time. In the case of the butterfly or banyan network, the number of switching delays in access to memory can be significant. We can ignore a single crossbar switch in the path from CPU to memory, but we cannot ignore five of them. Therefore, the BBN butterfly and several other machines in this class have been extended with an extra path to memory directly from each CPU to the corresponding memory location module.

Machines of this type are called Non Uniform Memory Access multiprocessors because the access time from CPU to memory is very fast for its local memory and significantly slower from CPU to other memory locations. NUMA machines have operating system problems special to themselves because of the need to optimized code and data placement ability. Sharing of code to the processors of the machine is a bad idea. However, it is better to duplicate the code, which is being executed in the local memory of the machine. Similarly, read-only data should also be duplicated. The stack of a process should be in the local memory of the CPU executing that process, so that the only data references to remote memory shared between multiple processes running on different CPUs.

Localization of data to a specific CPU that running a process requires that the process remain at that CPU for a long period. Instead of only one ready list for the system, allowing processes to migrate freely between different CPUs of multiprocessor, there is one ready list for each processor. Furthermore, at the time we create a process, the process placement problem is also must be solved.

Virtual memory subsystems have been developed for NUMA processors in order to solve the page placement problem, that is automatically replicates read-only pages in the local memories of the processors that reference to those memory locations, and automatically carries shared pages towards the local memory of the processor which frequently uses those pages. With the LRU page replacement algorithm, these systems do not try finding an optimum place to store each page, although, they observe faulty patterns and make appropriate decision about page placement problem.

Structure of CC-NUMA architecture
2.2-How NUMA Works

In order to understand how NUMA architecture works, it's necessary to know how the traditional symmetrical multiprocessing (SMP) architecture works.

SMP connects multiple processors together in single system architecture. That architecture makes use of the processors' combined power to run multiple applications or a single large application in the machine with best performance.

The processors in the SMP architecture communicate with each another and uses a common shared memory pool through a transportation mechanism, which is called an interconnect bus. With the increase in the number of processors in a server, the amount of traffic on the bus increases also too. That consequently causes the system throughput to reduce dramatically.

NUMA architecture, which is like SMP architecture, allows users to benefit from the combined power of multiple processors. In this architecture each processor accesses a common memory pool. But with a significant difference, it arranges the processors into small groups, which is called “nodes” in which all the processors are interconnected together.

For instance, a 16 processor server can be arranged into four nodes with four processors in each one. Each node has its own memory pool. NUMA reduces some of the bus traffic of SMP by having the processors in a node communicate with each another and having their local memories through separate, smaller local buses.

Processors in the NUMA system also can access memory pools of the other nodes’ local memory pools, but the time taken for that access varies with how far the nodes are away from one another. Hence the term Non-Uniform Memory Access used for this architecture.

2.3-Architectural Background of

Non-Uniform Memory Access (NUMA) Machines

The fundamental building block of a NUMA machine is a Uniform Memory Access (UMA) region, which is called as a “node”. In this region, the processors share a common memory. This common local memory provides the fastest memory access for each of the processors, which uses the node. The number of processors on a node is limited by the speed of the switch, which connects the processors with their local memory. Current systems have two to eight processors per node.

NUMA machines provide a linear address space that allows all processors to directly address all memory locations. This technical feature exploits the 64-bit addressing system, which is available in modern scientific computers. The advantages of NUMA machines over distributed memory machines are: faster movement of data, less replication of data and easier programming etc. The disadvantages of NUMA include the cost of hardware routers and the lack of programming standards for large scale configurations. Specific programs that provide a set of programming tools that are portable across all NUMA architectures solve the programming standard problem of this architecture.

For large scale configurations, multiple nodes are combined together so as to form a NUMA machine. When a processor on one node references data that is stored on another node, hardware routers automatically send the data from the node where it is stored to the node where the processor that makes the request locates. This extra step explained above results in delays in memory access, which can decrease the performance of the system.

Small and medium scale NUMA machines have only one level of memory hierarchy; data is either local or remote. However, large scale NUMA machines use a routing topology, where delays are greater for nodes, which are located at further away locations. One of the design objectives of a NUMA machine is to make the routers as fast as possible to minimize the time delay difference between local and remote memory references.

The performance of an application program depends on the number of nodes used. If, only two nodes are used and the memory is placed randomly, there would be a 50% chance that memory references would be local. With the increase at the number of nodes, this probability decreases significantly.

Symmetrical Multiprocessing, clustering, and distributed computing are the solutions offered to solve larger, more complex, and lengthy problems. Non-Uniform Memory Access (NUMA) design architecture is a different approach to solve these type of problems. It is a multiprocessor design concept, which intends to avoid some of the pitfalls of other high performance design architectures encounter. In this part, we'll explain another architectural aspect of the NUMA: An extension of CPU and system caches.

Non-Uniform Memory Access architecture allows further scalability in multiprocessing machines by splitting processors into separate groups called nodes. Each node in a NUMA architecture system consists of two or more processors, a memory portion dedicated for that node, also an L2 cache dedicated for that node, local I/O system if necessary, and finally a special interface in order to connect the nodes to a network of other nodes. Each node has its own, private memory bus available. This bus is only for the processors within the node. This separation of processor groups, as well as the segmentation of the main memory into different pools, reduce or eliminate the excess buses within each node and allow systems to have hundreds of processors. Code executing within a single node uses all of the benefits of each CPU's L1 cache and the node's shared L2 cache without having any problem with all other processors about using the memory bus. This feature allows all of the processors in a NUMA system to work with a minimum time delay as long as they make their memory accesses to their own local memory pool. For parallellized code, or code written for the use in the NUMA architecture, this arrangement is ideal because memory access between memory pools –more clearly across node boundaries- is not so frequent. When a processor needs to use memory locations from another node, the specialized node to node interface is used to fetch the non-local locations. It is much like a traditional main memory data request, which includes the performance loss too. The combination of local node memory access and non-local node memory access, leads to varying memory access times, and finally that leads to the Non-Uniform Memory Access concept.

[image: image5.png][image: image6.png]
[image: image7.png]
Cache coherence problem and Memory replacement mechanism in UMA and NUMA

2.4-NUMA (Non-Uniform Memory Access) Systems

Versus

UMA (Uniform Memory Access) Systems
Almost all the shared memory architectures that have appeared recently are of the NUMA (Non-Uniform Memory Access) architecture type. A centralized common memory that is uniformly accessible by all the nodes of a multiprocessor gives chance to a simpler platform for software to run on rather than memory that is distributed among the nodes of the multiprocessor. Certain performance advantages gained by distributing memory among nodes do not give the best performance always. The same penalties are being paid, albeit in a different form, and at a different time in the execution of a program.

Ring based multiprocessors built from fast point to point links can be the next generation of medium scalable UMA (uniform memory access) machines, replacing the shared bus kind architectures. One such architecture is described along with details of how any snooping protocol, including those of the write broadcast variety, can be ported to this new environment.

Shared memory machines may be designed in UMA (uniform memory access) architecture or NUMA (non-uniform memory access) architecture. In UMA architectures, every portion of the memory address space is equally accessible by a node. Namely, they have the same access latency time. For each node in NUMA architectures, some portions of the memory address space are closer than others. This will happen if the memory is physically distributed among the nodes of the system. The portion of the memory address space that is local has lower access latency than the portions that are remote. This means they are physically located at a different node.

Between the two types of shared memory machines, there is a classic hardware vs. software complexity trade-off. It is difficult to design a UMA machine that works efficiently, however these type of machines are relatively easier to program. However, on the contrary, NUMA machines are easier to build, but it is much more difficult to program them effectively. In the last decade, UMA machines built with a single shared bus had become commonly used. However, with increasing processor speeds, especially with the popularity of the processor types which use varieties of RISC architecture, and the physical limitations of shared buses, this kind of architecture has become problematic and it become difficult to increase their performance. Point to point communication technology on the other hand can keep up with processor speeds. Processors connected together using point to point links in the form of a ring. This type of communication technology can achieve very high bandwidth communication speed.

[image: image8.png] [image: image9.png]
Memory models for UMA and NUMA architectures

2.5-NUMA (Non-Uniform Memory Access) Systems

Versus

SMP (Symmetric Multiprocessing) Systems
NUMA (non-uniform memory access) is a method of configuring a cluster of microprocessor in a multiprocessing system so that they can share memory locally. This facility improves performance and gives the ability to the system to expand. NUMA architecture is used in a symmetric multiprocessing (SMP) system. An SMP (symmetric multiprocessing) system is called as a “tightly coupled” or “share everything” system in which multiple processors working under an operating system’s control can access each other's memory over a common bus or over an interconnected path. But there is a limitation of SMP: that is, as microprocessors are added, the shared bus or data path gets overloaded and this situation becomes a performance bottleneck. NUMA adds an intermediate level of memory, which is shared among a few microprocessors so that all data accesses don't have to travel over on the main system bus.

NUMA can be explained as a cluster in a box. The cluster typically consists of four microprocessors interconnected on a local bus to a shared memory on a single motherboard (for example, imagine four Pentium microprocessors, interconnected on a Peripheral Component Interconnect bus, to a shared memory called an “L3 cache” on a single motherboard which can probably be referred to as a card). This cluster unit can be added to similar units to form a symmetric multiprocessing system in which a common SMP bus interconnects all of the clusters. Such kind of system typically contains from 16 up to 256 microprocessors. For an application program running in an SMP system, all of the individual processor memories look like a single memory.

When a processor looks for data at a certain memory address, it first looks in the L1 cache on the microprocessor itself, then it looks in larger L1 and L2 cache chips which are nearby to the processor, and then on it looks in a third level of cache that the NUMA architecture configuration provides before seeking the data in the “remote memory locations” which are located near the other microprocessors. Each of these system clusters is called as a node by NUMA in the interconnection network of the multiprocessor. NUMA provides a hierarchical view of the data on all of the nodes.

Data is moved on the buses between the clusters of a NUMA SMP system using scalable coherent interface (SCI) technology. SCI coordinates consistency, which is called as “cache coherence” across the nodes of the multiple clusters.

SMP and NUMA systems are typically used for specific application types such as data mining and decision support system in which processing can be divided into a number of processors that collectively work on a common database. Sequent, Data General, and NCR are the most popular companies among companies that produce NUMA SMP systems.

Non-Uniform Memory Access architecture (NUMA), like the symmetrical multiprocessing (SMP), is a technology which allows adding processors to the system in order to extend server scalability. Both technologies allow users to start with relatively small servers and add processors to their systems as their applications become larger. For most of the SMP servers, obtaining better performance become difficult and more expensive after eight processors, on the contrary NUMA can scale even much higher. Eventually, this NUMA technology will allow up to 256 processors to be linked together in a single box — even some vendors believe they will link together up to 512 processors.

NUMA has been floating around in research laboratories for years. But benefits of it such as greater scalability and lower price compared with SMP helped it to gain commercial acceptance in the marketplace.

NUMA's scalability is approved as its greatest benefit. Scalability is crucial when the data to be processed grows bigger and faster and online transaction processing applications become important for file servers.

Another benefit of NUMA is that users seldom have to tweak their databases or applications to take the advantage of it. That means when users run out of capacity on their SMP servers, they can move their applications to NUMA servers with relative ease.

Most of the other scalable architectures, such as massively parallel processing and clustering, require users to get familiar and interested in with code which is complex and expensive process, before moving their applications elsewhere.

It is better to say that NUMA can be thought as a starting point where SMP finishes or can not go furthermore. Typically, SMP servers can handle scalability issues well but for only up to about eight processors. After that number, it becomes increasingly costly to derive additional performance from the SMP system.

It is expensive to involve in building larger and larger SMP multiprocessors. NUMA is not different from SMP completely it is a technical engineering approach for extending the SMP scalability, It is efficient and relatively inexpensive. Today NUMA servers support 32 processors and eventually it will be able to support up to 256 processors. A typical NUMA system configuration ranges from 8 to 16 processors, supports up to 32GB of memory, and has more than 1TB of disk space and runs Unix, this is the highest point that NUMA architecture reaches now.

[image: image10.png]
Some comparisons between NUMA and SMP architectures

2.6-NUMA Today

Most popular vendors that are leading the NUMA technology are Beaverton, Ore.-based Sequent Computer Systems, Inc.; Mountain View, Calif.-based Silicon Graphics, Inc.; Data General Corp. in Westboro, Mass.; and Siemens/Nixdorf Information system AG in Germany.

Finally, all of the other server vendors, including Sun Microsystems, Inc. and Hewlett-Packard Co. in Palo Alto, Calif.; Digital Equipment Corp. in Maynard, Mass.; Tandem Computer Systems, Inc., a Compaq company in Cupertino, Calif.; and NCR Corp. in Dayton, Ohio, also use NUMA architecture techniques in varying degrees so as to increase scalability.

Despite NUMA's important benefits, it has a major disadvantage: it is seen as relatively untested niche technology, and it has to challenge with this idea, and surmount it. Analysts say like that also. In the future Windows NT support is going to be very important for wider acceptance of the NUMA architecture. Briefly, wider number of operating system support drives wider acceptance of NUMA architecture in the servers and other multiprocessor machines.

[image: image11.png]
[image: image12.png] [image: image13.png]
[image: image14.png]
32 Processor NUMA Machine with its System Partioning, Application Resource Partitioning and Cluster Configuration

	

	Vendor
Product
Processors supported
Memory
Disk storage
Starting Price
Sequent Computer Systems, Inc.
NUMA-Q 2000
Up to 252 Pentium Pro
Up to 252G bytes
100T bytes
$100,000
Data General Corp.
AV20000
Up to 64 Pentium II Xeon
64G bytes
100T bytes
$70,000
Silicon Graphics, Inc.
Origin 2000
Up to 128 MIPS R1000
Up to 252G bytes
Up to 232T bytes
$52,164

A sampling of vendors

2.7-Drawbacks of NUMAs

One of the main reasons for preferring single address space architectures as opposed to message passing architectures is for this reason: Simplicity of the computational model that they support. Message passing architectures are easier to build and they can show a higher peak performance. However, this causes a cost of greater software complexity. Scalability is the main motivating factor behind NUMA architecture designs. What is hidden behind these designs, and which is not often mentioned, is that: Some of the simplicity and elegance of the shared memory computational model is lost when different portions of the address space have unequal access latencies, if we look from the perspective of any particular node. Several hidden effects appear that requires sophisticated planning and complex software to achieve good performance. In other words, some of the factors that motivate a shared memory computational model are not effectively and actively used in NUMA architectures. In the message passing computational model, each node has a physically disjoint memory address space. This means that not only has the code to be divided up for each processor, but also that the data has to be partitioned among the various nodes of the machine. However, in the shared memory computational model this additional burden is removed from the programmer. Partitioning of data is supposed to happen automatically by the mechanism called cache affinity, which means data, which has close relationships, is grouped together. This mechanism works in UMA machines is like that: Initially all the data is in the main memory and when a processor first accesses some piece of data, this portion of data is brought over the network and stored into its local cache memory. With this manner all the data that each processor needs for ends up being located close to that processor. In NUMA machines however, this data partitioning must be done before, since the memory is physically distributed over the system. Thus the problem of data partitioning is leaved to the hands of the programmer to solve, just happens like in the message passing architectures. In fact, if the data is not partitioned well before, excessive transfers of data between nodes take place, which results in less than optimal performance than expected. Accepting that I/O operations are not performed at every node, code and data must be transferred over the network to the nodes of the system. This is a critical fact that is not often taken into account in performance analysis of NUMA machines. Moreover, while cache miss rates are carefully taken into account, main memory page fault rates are not taken into account as well. The overhead of transferring code and data over the network to each node must be taken into account in both UMA and NUMA machines. The major difference is that this penalty is paid in the form of cold cache misses in UMA machines, and it is paid at the time of memory page faults in NUMA machines. In other words, this component of the performance advantage is not actually present in the NUMA architecture system model.

2.8-Frequently Asked Questions:

1) What does NUMA stand for?

2) What does Non-Uniform Memory Access means?

3) What is the difference between NUMA architecture and SMP architecture?

4) What is the difference between NUMA architecture and ccNUMA architecture?

5) What is a node, what does it stand for?

6) What is meant by local and remote memory?

7) What does distance mean in memory access, how does the access time vary?

8) Could a real world analogy of the NUMA architecture be given to understand all these terms?

9) What are the advantages of NUMA architecture?

10) What are the disadvantages of NUMA architecture?

11) What are some alternatives to NUMA architecture?

12) Could a brief description of the main NUMA architecture implementations be given for clarification?

2.9-Frequently Given Answers:

1) What does NUMA stand for?

Answer:

The term NUMA stands for Non-Uniform Memory Access. It is a type of single address space multiprocessor in which some memory accesses are faster than others depending which processor asks for which word.

2) What does Non-Uniform Memory Access mean?

Answer:

Non-Uniform Memory Access means that it will take longer to access some regions of memory than other parts of memory locations. This is because of the fact that some regions of memory are accessed via physically different busses from other regions. This can result in some programs to perform poorly, which are not compatible with NUMA architecture. The architecture also introduces the concept of local and remote memory. For a more visual description, refer to the answer to the question about NUMA architecture implementations. Also, see the answer to the question about the real world analogy for the NUMA architecture.

3) What is the difference between NUMA architecture and SMP architecture?

Answer:

The NUMA architecture was designed to overcome the scalability limits of the SMP architecture. In the SMP architecture, which stands for Symmetric Multi Processing, all memory access is made through the same shared memory bus. This architecture works well for a relatively small number of CPUs, but the real problem with the shared bus would appear when you have hundreds of CPUs competing for access to the memory via the shared memory bus. NUMA diminishes these bottlenecks by limiting the number of CPUs on any one memory bus, and connecting the various nodes by means of a high speed interconnect bus.

4) What is the difference between NUMA architecture and ccNUMA architecture?

Answer:

The difference is very small to consider in a detailed manner. ccNUMA stands for Cache-Coherent NUMA, but NUMA and ccNUMA can be thought as synonymous. The applications for non-cache coherent NUMA machines are very rare, and they are so difficult to program, so unless specifically stated otherwise, NUMA actually means the same with ccNUMA.

5) What is a node, what does it stand for?

Answer:

One of the problems with describing the NUMA architecture is that, there are many different ways to implement this technology. Eventually this led to a problem for the exact definition of a node. A technically correct and also simple and ambiguous definition of a node is: a region of memory in which every byte has the same distance from each CPU. A more common and technical definition is: a block of memory and the CPUs, I/O devices and ports, etc. physically on the same bus as the memory. Some architecture do not have memory in a node, CPUs, and I/O all on the same physical bus, so the second definition does not truly hold usually. In many cases, the less technical definition, the first one explained above, should be sufficient; but often the technical definition is more correct.

6) What is meant by local and remote memory terms?

Answer:

The terms local memory and remote memory are typically used for referencing to a currently running process. More clearly, local memory is typically defined to be the memory that is on the same node as the CPU currently running the process. Any memory that does not belong to the node on which the process is currently running is then called remote memory by that definition.

Local and remote memory terms can also be used in referencing to things other than the currently running process. When considering about interrupt context, when there is technically no currently executing process, but memory on the node containing the CPU, which is handling the interrupt is still called local memory. Also, local and remote memory terms can be used in terms of a disk. For example if there was a disk (for example: attached to node 1) doing a DMA (Direct Memory Access), the memory it is reading or writing would be called remote if it was located on another node (for example: node 0).

7) What does distance mean in memory access, how does the access time vary?

Answer:

NUMA based architectures necessarily introduce a notion of distance between system components (for example: CPUs, memory, I/O busses, etc). The metric, which is used to determine a distance varies, but hops, is a popular metric, along with like latency and bandwidth. These terms all mean essentially the same thing that when they are used in a networking context (mostly because a NUMA machine is not all that different from a very tightly coupled cluster). So when it is used to describe a node, we could say that a particular range of memory is 2 hops (busses) from CPUs 0.3 and SCSI Controller 0. Thus this means, CPUs 0.3 and the SCSI Controller are a part of the same node.

8) Could a real world analogy of the NUMA architecture be given to understand all these terms?

Answer:

Imagine that you are going to bake a cake. You have a group of ingredients (from NUMA architecture’s aspect: memory pages) that you need to complete the recipe (from NUMA architecture’s aspect: process). Some of the ingredients you may have in your cabinet (from NUMA architecture’s aspect: local memory), but some of the ingredients you might not have, and have to ask a neighbor for them (from NUMA architecture’s aspect: remote memory). The general idea is to try and have as many of the ingredients in your own cabinet as possible, since this reduces your time and effort in making the cake. You also have to remember that your cabinets can only hold a fixed amount of ingredients (from NUMA architecture’s aspect: physical nodal memory). If you try and buy more, but you have no room to store it, you may have to ask your neighbor to keep it in his/her cabinet until you need it (from NUMA architecture’s aspect: local memory full, so allocate pages remotely). Accessing to remote memory locations takes long time when it is compared to accessing local memory areas, in this analogy think about the time period you use for accessing your cabinet versus time period you use for calling your neighbor and ask for some ingredients.

9) What are the advantages of NUMA architecture?

Answer:

The main benefit of NUMA is scalability as mentioned many times in the context. It is extremely difficult to scale SMP to, 8 to 12 CPUs. At that number of CPUs, the memory bus is under heavy traffic congestion. NUMA is one way of reducing the number of CPUs competing for access to a shared memory bus. Having several memory busses and only having a small number of CPUs, which are on each of those busses, accomplish this task. There are other ways of building massively multiprocessor machines, but NUMA is an efficient system and easy to scale and manage.

10) What are the disadvantages of NUMA architecture?

Answer:

CPU and/or node caches can result in NUMA (Non-Uniform Memory Access) effects. More clearly, for example, the CPUs on a particular node will have a higher bandwidth and/or a lower latency to access the memory and CPUs on that same node. Due to this, you can see things like lock starvation under high traffic contention. This is because if CPU x in the node requests a lock already held by another CPU y in the node, it's request will tend to beat out a request from a remote CPU z. Consequently there would occur inequity conditions between CPUs of the system

11) What are some alternatives to NUMA architecture?

Answer:

Splitting memory up to possibly arbitrarily pieces and assigning it to groups of CPUs can give some performance benefits similar to actual NUMA architecture. Furthermore, a design setup like this would be like a regular NUMA machine where the line between local and remote memory is blurred, since all the memory is actually on the same bus. For example the PowerPC Regatta system is an example of this. By using clusters some NUMA like performance can be achieved as well. A cluster is very similar to a NUMA machine, where each individual machine in the cluster becomes a node in our virtual NUMA machine. The only real difference is at the nodal latency. In a clustered environment, the latency and bandwidth on the internodal links are likely to be much worse than the NUMA architecture’s interconnected node design.

12) Could a brief description of the main NUMA architecture implementations be given for clarification?

Answer:

The main types of NUMA architecture in the commercial area are IBM NUMA-Q, Compaq Wildfire, and SGI MIPS64. Descriptions and diagrams of the above system types and a standard SMP system can be found in reference pages of this context in order to make better comparison.

3-References:

1)

http://www.cs.drexel.edu/~bmitchel/course/cs282/lec07.pdf
Notes Courtesy of Jeremy R. Johnson “System Architecture”

2)

Computer Organization and Design: The Hardware/Software Approach, Second Edition, by David Patterson and John Hennessy, 1998 MORGAN KAUFMANN PUBLISHERS, INC.

3)

 Lecture Notes of San Diego State University about subject “Multiprocessors”

4)

http://www.gris.uni-tuebingen.de/~bartz/tutorials/sig2000course/s3.pdf
Rendering and Visualization in Parallel Environments, Architecture of Technical Workstations

5)

Lecture notes about Extending OpenMP to

Non-Uniform Memory Access (NUMA) Architectures

Nathan Robertson http://www.nathanr.net/honours
6)

http://www.decus.gr.jp/decus99/sessioncd/NOTES/UN128.PDF
Topic is: Making Sense of Clusters, NUMA, and Partitioning; San Diego Convention Center

7)

A Case for Uniform Memory Access Multiprocessors Gautam Dewan and V.S.S. Nair

Department of Computer Science and Engineering, Southern Methodist University

8)

Introduction to MIMD architectures, Dr Ben Choi TECH Computer Science publishing

9)

Lecture Notes of ECE/CS 552: Parallel Processors Instructor: Mikko H Lipasti

University of Wisconsin-Madison

10)

http://www.cs.uiowa.edu/~jones/opsys/notes/38.html
Distributed Systems Part of the 22C: 116 Lecture Notes for Fall 2002 by Douglas W. Jones
THE UNIVERSITY OF IOWA Department of Computer Science

11)

http://www.fmslib.com/fmsman/doc/numa.html
Subject is: Non-Uniform Memory Access (NUMA) Machines

12)

http://portal.acm.org/citation.cfm?id=165505&jmp=cit&dl=GUIDE&dl=ACM#IndexTerms
Subject is: A case for uniform memory access multiprocessors

13)

http://www.student.hig.se/~na98csa/linux/node23.html
Subject is: Distributed Systems

14)

http://www.devchannel.org/hardwarechannel/03/02/25/0647211.shtml?tid=36
Subject is: NUMA- Breaking Memory Bottlenecks, Improving Scalability by Jeff Dean

15)

http://www.intersystems.com/cache/technology/directions/numa.html
Subject is: Cache and NUMA Systems

16)

http://whatis.techtarget.com/definition/0,,sid9_gci212678,00.html
Subject is: NUMA (Non-Uniform Memory Access)

17)

http://www.computerworld.com/hardwaretopics/hardware/server/story/0,10801,43424,00.html
Subject is: NUMA a Quickstudy by Jaikumjar Vijayan

18)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/numa_support.asp
Subject is: NUMA Support

19)

http://lse.sourceforge.net/numa/faq/index.html
A document designed to answer some frequently asked questions about the NUMA architecture.

20)

http://starlet.deltatel.ru/ora$doc/7/DOC/server/doc/SPS73/chap3.htm
Subject is: Parallel Hardware Architecture

21)

http://hpc.serc.iisc.ernet.in/~govind/hpc/L20-Par-Arch.txt
Subject is: Parallel Architectures

22)

http://www.arc.unm.edu/~bbaltz/SGI/ohw_mod/ohw_Slide_22.html
Subject is: NUMA (Non-Uniform Memory Access)

23)

http://lse.sourceforge.net/numa/

Subject is: Linux Support for NUMA Hardware

