How To Write
Unmaintainable Code

Roedy Green, 1997
http://mindprod.com/unmain.html

Outline

General Principles

Naming

Camouflage

Documentation

Program Design

Coding Obfuscation

Testing

Philosophy: Roll Your Own
The Shoemaker Has No Shoes

General Principles

Programmer wants to rapidly find the place
of change.

Programmer never sees the whole program
but a small part visible on screen.

Any local change made should introduce side
effects.

Force him to read and understand all of the
source if he insisting on making a safe
change.

Misinterpret the concept “"Information Hiding”

3

Naming

Art of naming the identifiers

Buy a copy of a name book like "Names for
Baby”

If you want easy to type names type several
keys gently with your fingers. It will be
optimum:

asd pol ef oin

Use single letter variable names:
meaningless enough, unguessable.

Misspell anything meaningful:
f uond conpl ated raedy

Naming (cntd.)

Use abstract words like, it, everything,
handle, stuff, things, do, calculate, perform

use A.C.R.0.N.Y.M.S
CapiTaliZe aRbItRarilY

Reuse Names. Give same names to variables,
functions, methods, class names as your
programming language permit.

Exploit Compiler Name Length Limits
my_project _counter and my_project tnp will
be interpreted same if there is a limit with 8.

Naming (cntd.)

* Use mixed combinations of underscores: _ ,
___, ____as identifiers

e extended ASCII and accents
typedef struct {int x,y} ?nt;

* Rename and Reuse.
You do not have to respect people named the
class libraries, library functions etc. Recycling
is good, save the earth.

e When to use |
| as the loop variable is old fashion and
boring. Use it for anywhere else. 6

Naming (cntd.)

* Use visual similarities:
LONG , LONG, 1long, | ong

* Misleading names
| sVal | d(x) does not have to check if x is

valid, and always modify side-effects.

* Use obscure references
use MyG rl Fri endsFavori t eCol or instead

of bl ue.

Camouflage

* Make comments look like code and Vice Versa
y += x ;/* y keeps the sum
y += 2 ; * calculated in the | oop body

*Resul ting sonmet hi ng usel ess */
printf(“%\n”,y);

e Overuse “#defi ne”. It is a gold mine. It also hides
compiler errors.

* Overload operators
Choose unrelated operators for overload.

* Enrich your code with unused variables, functions,
methods etc.

Documentation

* Avoid correct, up to date and meaningful
documentation.

* Document the obvious
| ++: // 1 ncrement the I

* Do not document the purpose. Leave it to
maintainer for fun.

* Do not document the unimportant details.
How to add a new syntax, handler, where to
make related changes etc.

Documentation (cntd.)

* Giving much detail will also help. Write a
design report with >5 levels of titles and
nundreds of pages full of useless details.

* Do not document possible troubles and found
ougs. Comments like “Fix here” will make
you look incompetent.

* Do not document variables. What they
represents, what are the units, limits.

10

Program Design

* Abstraction rule “declare once, use many
times” is useless. Guarantee that if some
change is to be made, you have to make it in
several places, files, directories.

* Types are annoying. Make everything (void
*) Or Obj ect and cast later when necessary.

* Never use exceptions, asserts and proper use
of error codes. They cut the joy of debugging
shorter.

* Do not encapsulate. Be transparent to calling
functions, they are also yours .

11

Program Design (cntd.)

Copy/paste. Otherwise bugs cannot
reproduce.

Use static arrays and forget to check the
index boundaries.

Make too much of the good things:
over-abstraction, over-encapsulation.

Make use of everything violating well
structured OO programming:

global variables, side effects, friend
declarations, public member variables.

12

Program Design (cntd.)

* Use many overloaded variants of the same
function. Let people try to find out what the
difference is.

* Permute everything. Never use the same
parameter order for similar
functions/methods.

* Avoid configurability. Do not use external
configuration files, resource managers,
environment variables etc. Recompiling for a
simple change is fun.

13

Coding Obfuscation

You can always a more strange looking code
that makes the same thing. Increment
operators, assignment values, pointer

arithmetic for arrays etc.
for (1=)=t=0;1*]*t;1+=3+] ++, scanf(“%”, &t)) ;

Use syntactic properties of your language.
040 is more surprising than 32.

Implicit type conversion is handy.

Semicolons will fake people:
for (1=0;1<10;1++); { ... }

14

Coding Obfuscation (cntd.)

Nesting. Go as deeper as you can go. No one
can continue after 10 open parenthesis or
nested blocks.

Depend on the items described as “"compiler

dependent” in your manual.
a = ++a - ++a:

Proper indentation is time and space
consuming.

Use macros (again)

The longer it is, the harder is to read it.
Single page function looks too simple. 15

Testing

* Avoid it. Don't you have self confidence?

* Avoid performance testing. If it is not fast

enough, your customer can buy a faster
machine.

* Never write test cases. Several screens and
clicks are always sufficient.

16

Philosophy: Roll Your Own

Do not share any information with others.

Create your own standards, own
mechanisms, own syntax etc.

Your job is to make your functions work.
Others should fit into your choices.

You want to make it easy for yourself, neither
for users nor for other maintainers.

You are skillful enough to do it all.

17

Shoemaker Has No Shoes

* You do not have to use technology.

* Pretty printers, syntax checkers, revision
control systems, CASE tools are all for
newbies.

18

