
1

How To Write
Unmaintainable Code

Roedy Green, 1997
http://mindprod.com/unmain.html

2

Outline

● General Principles

● Naming
● Camouflage
● Documentation
● Program Design

● Coding Obfuscation
● Testing
● Philosophy: Roll Your Own
● The Shoemaker Has No Shoes

3

General Principles

● Programmer wants to rapidly find the place
of change.

● Programmer never sees the whole program
but a small part visible on screen.

● Any local change made should introduce side
effects.

● Force him to read and understand all of the
source if he insisting on making a safe
change.

● Misinterpret the concept “Information Hiding”

4

Naming

● Art of naming the identifiers

● Buy a copy of a name book like “Names for
Baby”

● If you want easy to type names type several
keys gently with your fingers. It will be
optimum:
asd poi ef oin

● Use single letter variable names:
meaningless enough, unguessable.

● Misspell anything meaningful:
fuond complated raedy

5

Naming (cntd.)
● Use abstract words like, it, everything,

handle, stuff, things, do, calculate, perform

● use A.C.R.O.N.Y.M.S
● CapiTaliZe aRbItRarilY

● Reuse Names. Give same names to variables,
functions, methods, class names as your
programming language permit.

● Exploit Compiler Name Length Limits
my_project_counter and my_project_tmp will
be interpreted same if there is a limit with 8.

6

Naming (cntd.)

● Use mixed combinations of underscores: _ ,
__, ___ as identifiers

● extended ASCII and accents
typedef struct {int x,y} ?nt;

● Rename and Reuse.
You do not have to respect people named the
class libraries, library functions etc. Recycling
is good, save the earth.

● When to use i
i as the loop variable is old fashion and
boring. Use it for anywhere else.

7

Naming (cntd.)

● Use visual similarities:
L0NG , LONG, 1ong, long

● Misleading names
isValid(x) does not have to check if x is
valid, and always modify side-effects.

● Use obscure references
use MyGirlFriendsFavoriteColor instead
of blue.

8

Camouflage

● Make comments look like code and Vice Versa
y += x ;/* y keeps the sum
y += 2 ; * calculated in the loop body
 *Resulting something useless */
printf(“%f\n”,y);

● Overuse “#define”. It is a gold mine. It also hides
compiler errors.

● Overload operators
Choose unrelated operators for overload.

● Enrich your code with unused variables, functions,
methods etc.

9

Documentation

● Avoid correct, up to date and meaningful
documentation.

● Document the obvious
i++; // increment the i

● Do not document the purpose. Leave it to
maintainer for fun.

● Do not document the unimportant details.
How to add a new syntax, handler, where to
make related changes etc.

10

Documentation (cntd.)

● Giving much detail will also help. Write a
design report with >5 levels of titles and
hundreds of pages full of useless details.

● Do not document possible troubles and found
bugs. Comments like “Fix here” will make
you look incompetent.

● Do not document variables. What they
represents, what are the units, limits.

11

Program Design

● Abstraction rule “declare once, use many
times” is useless. Guarantee that if some
change is to be made, you have to make it in
several places, files, directories.

● Types are annoying. Make everything (void
*) or Object and cast later when necessary.

● Never use exceptions, asserts and proper use
of error codes. They cut the joy of debugging
shorter.

● Do not encapsulate. Be transparent to calling
functions, they are also yours .

12

Program Design (cntd.)

● Copy/paste. Otherwise bugs cannot
reproduce.

● Use static arrays and forget to check the
index boundaries.

● Make too much of the good things:
over-abstraction, over-encapsulation.

● Make use of everything violating well
structured OO programming:
global variables, side effects, friend
declarations, public member variables.

13

Program Design (cntd.)

● Use many overloaded variants of the same
function. Let people try to find out what the
difference is.

● Permute everything. Never use the same
parameter order for similar
functions/methods.

● Avoid configurability. Do not use external
configuration files, resource managers,
environment variables etc. Recompiling for a
simple change is fun.

14

Coding Obfuscation

● You can always a more strange looking code
that makes the same thing. Increment
operators, assignment values, pointer
arithmetic for arrays etc.
for (i=j=t=0;i*j*t;i+=3+j++,scanf(“%d”,&t)) ;

● Use syntactic properties of your language.
040 is more surprising than 32.

● Implicit type conversion is handy.
● Semicolons will fake people:
for (i=0;i<10;i++); { ... }

15

Coding Obfuscation (cntd.)

● Nesting. Go as deeper as you can go. No one
can continue after 10 open parenthesis or
nested blocks.

● Depend on the items described as “compiler
dependent” in your manual.
a = ++a - ++a;

● Proper indentation is time and space
consuming.

● Use macros (again)
● The longer it is, the harder is to read it.

Single page function looks too simple.

16

Testing

● Avoid it. Don't you have self confidence?

● Avoid performance testing. If it is not fast
enough, your customer can buy a faster
machine.

● Never write test cases. Several screens and
clicks are always sufficient.

17

Philosophy: Roll Your Own

● Do not share any information with others.

● Create your own standards, own
mechanisms, own syntax etc.

● Your job is to make your functions work.
Others should fit into your choices.

● You want to make it easy for yourself, neither
for users nor for other maintainers.

● You are skillful enough to do it all.

18

Shoemaker Has No Shoes

● You do not have to use technology.

● Pretty printers, syntax checkers, revision
control systems, CASE tools are all for
newbies.

